864 resultados para Sensor Data Fusion Applicazioni


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proliferation of wireless sensor networks in a large spectrum of applications had been spurered by the rapid advances in MEMS(micro-electro mechanical systems )based sensor technology coupled with low power,Low cost digital signal processors and radio frequency circuits.A sensor network is composed of thousands of low cost and portable devices bearing large sensing computing and wireless communication capabilities. This large collection of tiny sensors can form a robust data computing and communication distributed system for automated information gathering and distributed sensing.The main attractive feature is that such a sensor network can be deployed in remote areas.Since the sensor node is battery powered,all the sensor nodes should collaborate together to form a fault tolerant network so as toprovide an efficient utilization of precious network resources like wireless channel,memory and battery capacity.The most crucial constraint is the energy consumption which has become the prime challenge for the design of long lived sensor nodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data caching is an important technique in mobile computing environments for improving data availability and access latencies particularly because these computing environments are characterized by narrow bandwidth wireless links and frequent disconnections. Cache replacement policy plays a vital role to improve the performance in a cached mobile environment, since the amount of data stored in a client cache is small. In this paper we reviewed some of the well known cache replacement policies proposed for mobile data caches. We made a comparison between these policies after classifying them based on the criteria used for evicting documents. In addition, this paper suggests some alternative techniques for cache replacement

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of wireless sensor network technology has enabled us to develop advanced systems for real time monitoring. In the present scenario wireless sensor networks are increasingly being used for precision agriculture. The advantages of using wireless sensor networks in agriculture are distributed data collection and monitoring, monitor and control of climate, irrigation and nutrient supply. Hence decreasing the cost of production and increasing the efficiency of production.This paper describes the application of wireless sensor network for crop monitoring in the paddy fields of kuttand, a region of Kerala, the southern state of India.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensor networks are one of the fastest growing areas in broad of a packet is in transit at any one time. In GBR, each node in the network can look at itsneighbors wireless ad hoc networking (? Eld. A sensor node, typically'hop count (depth) and use this to decide which node to forward contains signal-processing circuits, micro-controllers and a the packet on to. If the nodes' power level drops below a wireless transmitter/receiver antenna. Energy saving is one certain level it will increase the depth to discourage trafiE of the critical issue for sensor networks since most sensors are equipped with non-rechargeable batteries that have limitedlifetime. Routing schemes are used to transfer data collectedby sensor nodes to base stations. In the literature many routing protocols for wireless sensor networks are suggested. In this work, four routing protocols for wireless sensor networks viz Flooding, Gossiping, GBR and LEACH have been simulated using TinyOS and their power consumption is studied using PowerTOSSIM. A realization of these protocols has beencarried out using Mica2 Motes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of wireless sensor network technology has enabled us to develop advanced systems for real time monitoring. In the present scenario wireless sensor networks are increasingly being used for precision agriculture. The advantages of using wireless sensor networks in agriculture are distributed data collection and monitoring, monitor and control of climate, irrigation and nutrient supply. Hence decreasing the cost of production and increasing the efficiency of production. This paper describes the development and deployment of wireless sensor network for crop monitoring in the paddy fields of Kuttanad, a region of Kerala, the southern state of India.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of wireless sensor network technology has enabled us to develop advanced systems for real time monitoring. In the present scenario wireless sensor networks are increasingly being used for precision agriculture. The advantages of using wireless sensor networks in agriculture are distributed data collection and monitoring, monitor and control of climate, irrigation and nutrient supply. Hence decreasing the cost of production and increasing the efficiency of production. This paper describes the security issues related to wireless sensor networks and suggests some techniques for achieving system security. This paper also discusses a protocol that can be adopted for increasing the security of the transmitted data

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fingerprint based authentication systems are one of the cost-effective biometric authentication techniques employed for personal identification. As the data base population increases, fast identification/recognition algorithms are required with high accuracy. Accuracy can be increased using multimodal evidences collected by multiple biometric traits. In this work, consecutive fingerprint images are taken, global singularities are located using directional field strength and their local orientation vector is formulated with respect to the base line of the finger. Feature level fusion is carried out and a 32 element feature template is obtained. A matching score is formulated for the identification and 100% accuracy was obtained for a database of 300 persons. The polygonal feature vector helps to reduce the size of the feature database from the present 70-100 minutiae features to just 32 features and also a lower matching threshold can be fixed compared to single finger based identification

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die thermische Verarbeitung von Lebensmitteln beeinflusst deren Qualität und ernährungsphysiologischen Eigenschaften. Im Haushalt ist die Überwachung der Temperatur innerhalb des Lebensmittels sehr schwierig. Zudem ist das Wissen über optimale Temperatur- und Zeitparameter für die verschiedenen Speisen oft unzureichend. Die optimale Steuerung der thermischen Zubereitung ist maßgeblich abhängig von der Art des Lebensmittels und der äußeren und inneren Temperatureinwirkung während des Garvorgangs. Das Ziel der Arbeiten war die Entwicklung eines automatischen Backofens, der in der Lage ist, die Art des Lebensmittels zu erkennen und die Temperatur im Inneren des Lebensmittels während des Backens zu errechnen. Die für die Temperaturberechnung benötigten Daten wurden mit mehreren Sensoren erfasst. Hierzu kam ein Infrarotthermometer, ein Infrarotabstandssensor, eine Kamera, ein Temperatursensor und ein Lambdasonde innerhalb des Ofens zum Einsatz. Ferner wurden eine Wägezelle, ein Strom- sowie Spannungs-Sensor und ein Temperatursensor außerhalb des Ofens genutzt. Die während der Aufheizphase aufgenommen Datensätze ermöglichten das Training mehrerer künstlicher neuronaler Netze, die die verschiedenen Lebensmittel in die entsprechenden Kategorien einordnen konnten, um so das optimale Backprogram auszuwählen. Zur Abschätzung der thermische Diffusivität der Nahrung, die von der Zusammensetzung (Kohlenhydrate, Fett, Protein, Wasser) abhängt, wurden mehrere künstliche neuronale Netze trainiert. Mit Ausnahme des Fettanteils der Lebensmittel konnten alle Komponenten durch verschiedene KNNs mit einem Maximum von 8 versteckten Neuronen ausreichend genau abgeschätzt werden um auf deren Grundlage die Temperatur im inneren des Lebensmittels zu berechnen. Die durchgeführte Arbeit zeigt, dass mit Hilfe verschiedenster Sensoren zur direkten beziehungsweise indirekten Messung der äußeren Eigenschaften der Lebensmittel sowie KNNs für die Kategorisierung und Abschätzung der Lebensmittelzusammensetzung die automatische Erkennung und Berechnung der inneren Temperatur von verschiedensten Lebensmitteln möglich ist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The measurement of feed intake, feeding time and rumination time, summarized by the term feeding behavior, are helpful indicators for early recognition of animals which show deviations in their behavior. The overall objective of this work was the development of an early warning system for inadequate feeding rations and digestive and metabolic disorders, which prevention constitutes the basis for health, performance, and reproduction. In a literature review, the current state of the art and the suitability of different measurement tools to determine feeding behavior of ruminants was discussed. Five measurement methods based on different methodological approaches (visual observance, pressure transducer, electrical switches, electrical deformation sensors and acoustic biotelemetry), and three selected measurement techniques (the IGER Behavior Recorder, the Hi-Tag rumination monitoring system and RumiWatchSystem) were described, assessed and compared to each other within this review. In the second study, the new system for measuring feeding behavior of dairy cows was evaluated. The measurement of feeding behavior ensues through electromyography (EMG). For validation, the feeding behavior of 14 cows was determined by both the EMG system and by visual observation. The high correlation coefficients indicate that the current system is a reliable and suitable tool for monitoring the feeding behavior of dairy cows. The aim of a further study was to compare the DairyCheck (DC) system and two additional measurement systems for measuring rumination behavior in relation to efficiency, reliability and reproducibility, with respect to each other. The two additional systems were labeled as the Lely Qwes HR (HR) sensor, and the RumiWatchSystem (RW). Results of accordance of RW and DC to each other were high. The last study examined whether rumination time (RT) is affected by the onset of calving and if it might be a useful indicator for the prediction of imminent birth. Data analysis referred to the final 72h before the onset of calving, which were divided into twelve 6h-blocks. The results showed that RT was significantly reduced in the final 6h before imminent birth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flood modelling of urban areas is still at an early stage, partly because until recently topographic data of sufficiently high resolution and accuracy have been lacking in urban areas. However, Digital Surface Models (DSMs) generated from airborne scanning laser altimetry (LiDAR) having sub-metre spatial resolution have now become available, and these are able to represent the complexities of urban topography. The paper describes the development of a LiDAR post-processor for urban flood modelling based on the fusion of LiDAR and digital map data. The map data are used in conjunction with LiDAR data to identify different object types in urban areas, though pattern recognition techniques are also employed. Post-processing produces a Digital Terrain Model (DTM) for use as model bathymetry, and also a friction parameter map for use in estimating spatially-distributed friction coefficients. In vegetated areas, friction is estimated from LiDAR-derived vegetation height, and (unlike most vegetation removal software) the method copes with short vegetation less than ~1m high, which may occupy a substantial fraction of even an urban floodplain. The DTM and friction parameter map may also be used to help to generate an unstructured mesh of a vegetated urban floodplain for use by a 2D finite element model. The mesh is decomposed to reflect floodplain features having different frictional properties to their surroundings, including urban features such as buildings and roads as well as taller vegetation features such as trees and hedges. This allows a more accurate estimation of local friction. The method produces a substantial node density due to the small dimensions of many urban features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated diurnal nitrate (NO3-) concentration variability in the San Joaquin River using an in situ optical NO3- sensor and discrete sampling during a 5-day summer period characterized by high algal productivity. Dual NO3- isotopes (delta N-15(NO3) and delta O-18(NO3)) and dissolved oxygen isotopes (delta O-18(DO)) were measured over 2 days to assess NO3- sources and biogeochemical controls over diurnal time-scales. Concerted temporal patterns of dissolved oxygen (DO) concentrations and delta O-18(DO) were consistent with photosynthesis, respiration and atmospheric O-2 exchange, providing evidence of diurnal biological processes independent of river discharge. Surface water NO3- concentrations varied by up to 22% over a single diurnal cycle and up to 31% over the 5-day study, but did not reveal concerted diurnal patterns at a frequency comparable to DO concentrations. The decoupling of delta N-15(NO3) and delta O-18(NO3) isotopes suggests that algal assimilation and denitrification are not major processes controlling diurnal NO3- variability in the San Joaquin River during the study. The lack of a clear explanation for NO3- variability likely reflects a combination of riverine biological processes and time-varying physical transport of NO3- from upstream agricultural drains to the mainstem San Joaquin River. The application of an in situ optical NO3- sensor along with discrete samples provides a view into the fine temporal structure of hydrochemical data and may allow for greater accuracy in pollution assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physiological parameters measured by an embedded body sensor system were demonstrated to respond to changes of the air temperature in an office environment. The thermal parameters were monitored with the use of a wireless sensor system that made possible to turn any existing room into a field laboratory. Two human subjects were monitored over daily activities and at various steady-state thermal conditions when the air temperature of the room was altered from 22-23°C to 25-28°C. The subjects indicated their thermal feeling on questionnaires. The measured skin temperature was distributed close to the calculated mean skin temperature corresponding to the given activity level. The variation of Galvanic Skin Response (GSR) reflected the evaporative heat loss through the body surfaces and indicated whether sweating occurred on the subjects. Further investigations are needed to fully evaluate the influence of thermal and other factors on the output given by the investigated body sensor system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wireless sensor network (WSN) is a group of sensors linked by wireless medium to perform distributed sensing tasks. WSNs have attracted a wide interest from academia and industry alike due to their diversity of applications, including home automation, smart environment, and emergency services, in various buildings. The primary goal of a WSN is to collect data sensed by sensors. These data are characteristic of being heavily noisy, exhibiting temporal and spatial correlation. In order to extract useful information from such data, as this paper will demonstrate, people need to utilise various techniques to analyse the data. Data mining is a process in which a wide spectrum of data analysis methods is used. It is applied in the paper to analyse data collected from WSNs monitoring an indoor environment in a building. A case study is given to demonstrate how data mining can be used to optimise the use of the office space in a building.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a prototype model based on a wireless sensor actuator network (WSAN) aimed at optimizing both energy consumption of environmental systems and well-being of occupants in buildings. The model is a system consisting of the following components: a wireless sensor network, `sense diaries', environmental systems such as heating, ventilation and air-conditioning systems, and a central computer. A multi-agent system (MAS) is used to derive and act on the preferences of the occupants. Each occupant is represented by a personal agent in the MAS. The sense diary is a new device designed to elicit feedback from occupants about their satisfaction with the environment. The roles of the components are: the WSAN collects data about physical parameters such as temperature and humidity from an indoor environment; the central computer processes the collected data; the sense diaries leverage trade-offs between energy consumption and well-being, in conjunction with the agent system; and the environmental systems control the indoor environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Airborne LIght Detection And Ranging (LIDAR) provides accurate height information for objects on the earth, which makes LIDAR become more and more popular in terrain and land surveying. In particular, LIDAR data offer vital and significant features for land-cover classification which is an important task in many application domains. In this paper, an unsupervised approach based on an improved fuzzy Markov random field (FMRF) model is developed, by which the LIDAR data, its co-registered images acquired by optical sensors, i.e. aerial color image and near infrared image, and other derived features are fused effectively to improve the ability of the LIDAR system for the accurate land-cover classification. In the proposed FMRF model-based approach, the spatial contextual information is applied by modeling the image as a Markov random field (MRF), with which the fuzzy logic is introduced simultaneously to reduce the errors caused by the hard classification. Moreover, a Lagrange-Multiplier (LM) algorithm is employed to calculate a maximum A posteriori (MAP) estimate for the classification. The experimental results have proved that fusing the height data and optical images is particularly suited for the land-cover classification. The proposed approach works very well for the classification from airborne LIDAR data fused with its coregistered optical images and the average accuracy is improved to 88.9%.