1000 resultados para Sensing Enterprise
Resumo:
In this paper, we propose a low complexity and reliable wideband spectrum sensing technique that operates at sub-Nyquist sampling rates. Unlike the majority of other sub-Nyquist spectrum sensing algorithms that rely on the Compressive Sensing (CS) methodology, the introduced method does not entail solving an optimisation problem. It is characterised by simplicity and low computational complexity without compromising the system performance and yet delivers substantial reductions on the operational sampling rates. The reliability guidelines of the devised non-compressive sensing approach are provided and simulations are presented to illustrate its superior performance. © 2013 IEEE.
Silver nanocrystals modified microstructured polymer optical fibres for chemical and optical sensing
Resumo:
In-fibre chemical and optical sensors based on silver nanocrystals modified microstructured polymer optical fibres (MPOFs) were demonstrated. The silver nanocrystals modified MPOFs were formed by direct chemical reduction of silver ammonia complex ions on the templates of array holes in the microstructure polymer optical fibres. The nanotube-like and nanoisland-like Ag-modified MPOFs could be obtained by adjusting the conditions of Ag-formation in the air holes of MPOFs. SEM images showed that the higher concentration of the reaction solution (silver ammonia 0.5 mol/L, glucose 0.25 mol/L), gave rise to a tubular silver layer in MPOF, while the lower concentration (silver ammonia 0.1 M, glucose 0.05 M) produced an island-like Ag nanocrystal modified MPOF. The tubular Ag-MPOF composite fibre was conductive and could be directly used as array electrodes in electrochemical analyses. It displayed high electrochemical activity on sensing nitrate or nitrite ions. The enhanced fluorescence of dye molecules was observed when the island-like Ag-modified MPOF was inserted into a fluorescent dye solution. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A distributed temperature sensor based on Rayleigh scattering Brillouin optical time domain analysis (Rayleigh-BOTDA) is proposed in this paper. The sensor uses Rayleigh backscattering effect of microwave modulated pulse base sidebands as probe wave and a high sensitive photon counting detector for Brillouin signal intensity detection. Compared with a conventional BOTDA system, the Rayleigh-BOTDA effectively suppresses polarization-induced signal fluctuation resulting in improved signal intensity. The experimental scheme presented is simplified by using a single laser with one-end access. The temperature accuracy of the new sensing system was demonstrated as 1 degrees C on spatial resolution of 3 m.
Resumo:
Fiber Bragg grating (FBG) sensor for monitoring the electromagnetic strain in a low temperature superconducting (LTS) magnet was studied. Before used to LTS magnet strain sensing, the strain response of the sensor with 1.54-mu m wavelength at liquid helium was experimentally studied. It was found that the wavelength shift showed good linearity with longitudinal applied loads and the strain sensitivity is constant at 4.2 K. And then, the hoop strain measurement of a LTS magnet was carried out on the basis of measured results. Furthermore, the finite element method (FEM) was used to simulate the magnet strain. The difference between the experimental and numerical analysis results is very small.
Resumo:
Fiber Bragg grating (FBG) sensor for monitoring the electromagnetic strain in a low temperature superconducting (LTS) magnet was studied. Before used to LTS magnet strain sensing, the strain response of the sensor with 1.54-mu m wavelength at liquid helium was experimentally studied. It was found that the wavelength shift showed good linearity with longitudinal applied loads and the strain sensitivity is constant at 4.2 K. And then, the hoop strain measurement of a LTS magnet was carried out on the basis of measured results. Furthermore, the finite element method (FEM) was used to simulate the magnet strain. The difference between the experimental and numerical analysis results is very small.
Resumo:
The aim of this paper is to show that Dempster-Shafer evidence theory may be successfully applied to unsupervised classification in multisource remote sensing. Dempster-Shafer formulation allows for consideration of unions of classes, and to represent both imprecision and uncertainty, through the definition of belief and plausibility functions. These two functions, derived from mass function, are generally chosen in a supervised way. In this paper, the authors describe an unsupervised method, based on the comparison of monosource classification results, to select the classes necessary for Dempster-Shafer evidence combination and to define their mass functions. Data fusion is then performed, discarding invalid clusters (e.g. corresponding to conflicting information) thank to an iterative process. Unsupervised multisource classification algorithm is applied to MAC-Europe'91 multisensor airborne campaign data collected over the Orgeval French site. Classification results using different combinations of sensors (TMS and AirSAR) or wavelengths (L- and C-bands) are compared. Performance of data fusion is evaluated in terms of identification of land cover types. The best results are obtained when all three data sets are used. Furthermore, some other combinations of data are tried, and their ability to discriminate between the different land cover types is quantified
Resumo:
Maps of surface chlorophyllous pigment (Chl a + Pheo a) are currently produced from ocean color sensors. Transforming such maps into maps of primary production can be reliably done only by using light-production models in conjuction with additional information about the column-integrated pigment content and its vertical distribution. As a preliminary effort in this direction. $\ticksim 4,000$ vertical profiles pigment (Chl a + Pheo a) determined only in oceanic Case 1 waters have been statistically analyzed. They were scaled according to dimensionless depths (actual depth divided by the depth of the euphotic layer, $Z_e$) and expressed as dimensionless concentrations (actual concentration divided by the mean concentration within the euphotic layer). The depth $Z_e$ generally unknown, was computed with a previously develop bio-optical model. Highly sifnificant relationships were found allowing $\langle C \rangle_tot$, the pigment content of the euphotic layer, to be inferred from the surface concentration, $\bar C_pd$, observed within the layer of one penetration depth. According to their $\bar C_pd$ values (ranging from $0.01 to > 10 mg m^-3$), we categorized the profiles into seven trophic situations and computed a mean vertical profile for each. Between a quasi-uniform profile in eutrophic waters and a profile with a strong deep maximum in oligotrophic waters, the shape evolves rather regularly. The wellmixed cold waters, essentially in the Antarctic zone, have been separately examined. On average, their profiles are featureless, without deep maxima, whatever their trophic state. Averaged values their profiles are featureless, without deep maxima, whatever their trophic state. Averaged values their profiles are featureless, without deep maxima, whatever their trophic state. Averaged values of $ρ$, the ratio of Chl a tp (Chl a + Pheo a), have also been obtained for each trophic category. The energy stored by photosynthesizing algae, once normalized with respect to the integrated chlorophyll biomass $\langle C \rangle _tot $ is proportional to the available photosythetic energy at the surface via a parameter $ψ∗$ which is the cross-section for photosynthesis per unit of areal chlorophyll. By tanking advantage of the relative stability of $ψ∗.$ we can compute primary production from ocean color data acquired from space. For such a computation, inputs are the irradiance field at the ocean surface, the "surface" pigment from which $\langle C \rangle _tot$ can be derived, the mean $ρ value pertinent to the trophic situation as depicted by the $\bar C_pd or $\langle C \rangle _tot$ values, and the cross-section $ψ∗$. Instead of a contant $ψ∗.$ value, the mean profiles can be used; they allow the climatological field of the $ψ∗.$ parameter to be adjusted through the parallel use of a spectral light-production model.