989 resultados para SURFACE TEMPERATURES
Resumo:
Extension of 3-D atmospheric data products back into the past is desirable for a wide range of applications. Historical upper-air data are important in this endeavour, particularly in the maritime regions of the tropics and the southern hemisphere, where observations are extremely sparse. Here we present newly digitized and re-evaluated early ship-based upper-air data from two cruises: (1) kite and registering balloon profiles from onboard the ship SMS Planet on a cruise from Europe around South Africa and across the Indian Ocean to the western Pacific in 1906/1907, and (2) ship-based radiosonde data from onboard the MS Schwabenland on a cruise from Europe across the Atlantic to Antarctica and back in 1938/1939. We describe the data and provide estimations of the errors. We compare the data with a recent reanalysis (the Twentieth Century Reanalysis Project, 20CR, Compo et al., 2011) that provides global 3-D data back to the 19th century based on an assimilation of surface pressure data only (plus monthly mean sea-surface temperatures). In cruise (1), the agreement is generally good, but large temperature differences appear during a period with a strong inversion. In cruise (2), after a subset of the data are corrected, close agreement between observations and 20CR is found for geopotential height (GPH) and temperature notwithstanding a likely cold bias of 20CR at the tropopause level. Results are considerably worse for relative humidity, which was reportedly inaccurately measured. Note that comparing 20CR, which has limited skill in the tropical regions, with measurements from ships in remote regions made under sometimes difficult conditions can be considered a worst case assessment. In view of that fact, the anomaly correlations for temperature of 0.3–0.6 in the lower troposphere in cruise (1) and of 0.5–0.7 for tropospheric temperature and GPH in cruise (2) are considered as promising results. Moreover, they are consistent with the error estimations. The results suggest room for further improvement of data products in remote regions.
Resumo:
Using a highly resolved atmospheric general circulation model, the impact of different glacial boundary conditions on precipitation and atmospheric dynamics in the North Atlantic region is investigated. Six 30-yr time slice experiments of the Last Glacial Maximum at 21 thousand years before the present (ka BP) and of a less pronounced glacial state – the Middle Weichselian (65 ka BP) – are compared to analyse the sensitivity to changes in the ice sheet distribution, in the radiative forcing and in the prescribed time-varying sea surface temperature and sea ice, which are taken from a lower-resolved, but fully coupled atmosphere-ocean general circulation model. The strongest differences are found for simulations with different heights of the Laurentide ice sheet. A high surface elevation of the Laurentide ice sheet leads to a southward displacement of the jet stream and the storm track in the North Atlantic region. These changes in the atmospheric dynamics generate a band of increased precipitation in the mid-latitudes across the Atlantic to southern Europe in winter, while the precipitation pattern in summer is only marginally affected. The impact of the radiative forcing differences between the two glacial periods and of the prescribed time-varying sea surface temperatures and sea ice are of second order importance compared to the one of the Laurentide ice sheet. They affect the atmospheric dynamics and precipitation in a similar but less pronounced manner compared with the topographic changes.
Resumo:
BACKGROUND AND OBJECTIVES: In this in vitro feasibility study we analyzed tissue fusion using bovine serum albumin (BSA) and Indocyanine green (ICG) doped polycaprolactone (PCL) scaffolds in combination with a diode laser as energy source while focusing on the influence of irradiation power and albumin concentration on the resulting tensile strength and induced tissue damage. MATERIALS AND METHODS: A porous PCL scaffold doped with either 25% or 40% (w/w) of BSA in combination with 0.1% (w/w) ICG was used to fuse rabbit aortas. Soldering energy was delivered through the vessel from the endoluminal side using a continuous wave diode laser at 808 nm via a 400 microm core fiber. Scaffold surface temperatures were analyzed with an infrared camera. Optimum parameters such as irradiation time, radiation power and temperature were determined in view of maximum tensile strength but simultaneously minimum thermally induced tissue damage. Differential scanning calorimetry (DSC) was performed to measure the influence of PCL on the denaturation temperature of BSA. RESULTS: Optimum parameter settings were found to be 60 seconds irradiation time and 1.5 W irradiation power resulting in tensile strengths of around 2,000 mN. Corresponding scaffold surface temperature was 117.4+/- 12 degrees C. Comparison of the two BSA concentration revealed that 40% BSA scaffold resulted in significant higher tensile strength compared to the 25%. At optimum parameter settings, thermal damage was restricted to the adventitia and its interface with the outermost layer of the tunica media. The DSC showed two endothermic peaks in BSA containing samples, both strongly depending on the water content and the presence of PCL and/or ICG. CONCLUSIONS: Diode laser soldering of vascular tissue using BSA-ICG-PCL-scaffolds leads to strong and reproducible tissue bonds, with vessel damage limited to the adventitia. Higher BSA content results in higher tensile strengths. The DSC-measurements showed that BSA denaturation temperature is lowered by addition of water and/or ICG-PCL.
Resumo:
This thesis presents a paleoclimatic/paleoenvironmental study conducted on clastic cave sediments of the Moravian Karst, Czech Republic. The study is based on environmental magnetic techniques, yet a wide range of other scientific methods was used to obtain a clearer picture of the Quaternary climate. My thesis also presents an overview of the significance of cave deposits for paleoclimatic reconstructions, explains basic environmental magnetic techniques and offers background information on the study area – a famous karst region in Central Europe with a rich history. In Kulna Cave magnetic susceptibility variations and in particular variations in pedogenic susceptibility yield a detailed record of the palaeoenvironmental conditions during the Last Glacial Stage. The Kulna long-term climatic trends agree with the deep-sea SPECMAP record, while the short-term oscillations correlate with rapid changes in the North Atlantic sea surface temperatures. Kulna Cave sediments reflect the intensity of pedogenesis controlled by short-term warmer events and precipitation over the mid-continent and provide a link between continental European climate and sea surface temperatures in the North Atlantic during the Last Glacial Stage. Given the number of independent climate proxies determined from the entrance facies of the cave and their high resolution, Kulna is an extremely important site for studying Late Pleistocene climate. In the interior of Spiralka Cave, a five meter high section of fine grained sediments deposited during floods yields information on the climatic and environmental conditions of the last millenium. In the upper 1.5 meters of this profile, mineral magnetic and other non-magnetic data indicate that susceptibility variations are controlled by the concentration of magnetite and its magnetic grain size. Comparison of our susceptibility record to the instrumental record of winter temperature anomalies shows a remarkable correlation. This correlation is explained by coupling of the flooding events, cultivation of land and pedogenetic processes in the cave catchment area. A combination of mineral magnetic and geochemical proxies yields a detail picture of the rapidly evolving climate of the near past and tracks both natural and human induced environmental changes taking place in the broader region.
Resumo:
The number of record-breaking events expected to occur in a strictly stationary time-series depends only on the number of values in the time-series, regardless of distribution. This holds whether the events are record-breaking highs or lows and whether we count from past to present or present to past. However, these symmetries are broken in distinct ways by trends in the mean and variance. We define indices that capture this information and use them to detect weak trends from multiple time-series. Here, we use these methods to answer the following questions: (1) Is there a variability trend among globally distributed surface temperature time-series? We find a significant decreasing variability over the past century for the Global Historical Climatology Network (GHCN). This corresponds to about a 10% change in the standard deviation of inter-annual monthly mean temperature distributions. (2) How are record-breaking high and low surface temperatures in the United States affected by time period? We investigate the United States Historical Climatology Network (USHCN) and find that the ratio of record-breaking highs to lows in 2006 increases as the time-series extend further into the past. When we consider the ratio as it evolves with respect to a fixed start year, we find it is strongly correlated with the ensemble mean. We also compare the ratios for USHCN and GHCN (minus USHCN stations). We find the ratios grow monotonically in the GHCN data set, but not in the USHCN data set. (3) Do we detect either mean or variance trends in annual precipitation within the United States? We find that the total annual and monthly precipitation in the United States (USHCN) has increased over the past century. Evidence for a trend in variance is inconclusive.
Resumo:
The dissipation of high heat flux from integrated circuit chips and the maintenance of acceptable junction temperatures in high powered electronics require advanced cooling technologies. One such technology is two-phase cooling in microchannels under confined flow boiling conditions. In macroscale flow boiling bubbles will nucleate on the channel walls, grow, and depart from the surface. In microscale flow boiling bubbles can fill the channel diameter before the liquid drag force has a chance to sweep them off the channel wall. As a confined bubble elongates in a microchannel, it traps thin liquid films between the heated wall and the vapor core that are subject to large temperature gradients. The thin films evaporate rapidly, sometimes faster than the incoming mass flux can replenish bulk fluid in the microchannel. When the local vapor pressure spike exceeds the inlet pressure, it forces the upstream interface to travel back into the inlet plenum and create flow boiling instabilities. Flow boiling instabilities reduce the temperature at which critical heat flux occurs and create channel dryout. Dryout causes high surface temperatures that can destroy the electronic circuits that use two-phase micro heat exchangers for cooling. Flow boiling instability is characterized by periodic oscillation of flow regimes which induce oscillations in fluid temperature, wall temperatures, pressure drop, and mass flux. When nanofluids are used in flow boiling, the nanoparticles become deposited on the heated surface and change its thermal conductivity, roughness, capillarity, wettability, and nucleation site density. It also affects heat transfer by changing bubble departure diameter, bubble departure frequency, and the evaporation of the micro and macrolayer beneath the growing bubbles. Flow boiling was investigated in this study using degassed, deionized water, and 0.001 vol% aluminum oxide nanofluids in a single rectangular brass microchannel with a hydraulic diameter of 229 µm for one inlet fluid temperature of 63°C and two constant flow rates of 0.41 ml/min and 0.82 ml/min. The power input was adjusted for two average surface temperatures of 103°C and 119°C at each flow rate. High speed images were taken periodically for water and nanofluid flow boiling after durations of 25, 75, and 125 minutes from the start of flow. The change in regime timing revealed the effect of nanoparticle suspension and deposition on the Onset of Nucelate Boiling (ONB) and the Onset of Bubble Elongation (OBE). Cycle duration and bubble frequencies are reported for different nanofluid flow boiling durations. The addition of nanoparticles was found to stabilize bubble nucleation and growth and limit the recession rate of the upstream and downstream interfaces, mitigating the spreading of dry spots and elongating the thin film regions to increase thin film evaporation.
Resumo:
This review of late-Holocene palaeoclimatology represents the results from a PAGES/CLIVAR Intersection Panel meeting that took place in June 2006. The review is in three parts: the principal high-resolution proxy disciplines (trees, corals, ice cores and documentary evidence), emphasizing current issues in their use for climate reconstruction; the various approaches that have been adopted to combine multiple climate proxy records to provide estimates of past annual-to-decadal timescale Northern Hemisphere surface temperatures and other climate variables, such as large-scale circulation indices; and the forcing histories used in climate model simulations of the past millennium. We discuss the need to develop a framework through which current and new approaches to interpreting these proxy data may be rigorously assessed using pseudo-proxies derived from climate model runs, where the `answer' is known. The article concludes with a list of recommendations. First, more raw proxy data are required from the diverse disciplines and from more locations, as well as replication, for all proxy sources, of the basic raw measurements to improve absolute dating, and to better distinguish the proxy climate signal from noise. Second, more effort is required to improve the understanding of what individual proxies respond to, supported by more site measurements and process studies. These activities should also be mindful of the correlation structure of instrumental data, indicating which adjacent proxy records ought to be in agreement and which not. Third, large-scale climate reconstructions should be attempted using a wide variety of techniques, emphasizing those for which quantified errors can be estimated at specified timescales. Fourth, a greater use of climate model simulations is needed to guide the choice of reconstruction techniques (the pseudo-proxy concept) and possibly help determine where, given limited resources, future sampling should be concentrated.
Resumo:
Beim Laser-Sintern wird das Pulverbett durch Heizstrahler vorgeheizt, um an der Pulveroberfläche eine Temperatur knapp unterhalb des Materialschmelzpunktes zu erzielen. Dabei soll die Temperaturverteilung auf der Oberfläche möglichst homogen sein, um gleiche Bauteileigenschaften im gesamten Bauraum zu erzielen und den Bauteilverzug gering zu halten. Erfahrungen zeigen jedoch sehr inhomogene Temperaturverteilungen, weshalb oftmals die Integration von neuen oder optimierten Prozessüberwachungssystemen in die Anlagen gefordert wird. Ein potentiell einsetzbares System sind Thermographiekameras, welche die flächige Aufnahme von Oberflächentemperaturen und somit Aussagen über die Temperaturen an der Pulverbettoberfläche erlauben. Dadurch lassen sich kalte Bereiche auf der Oberfläche identifizieren und bei der Prozessvorbereitung berücksichtigen. Gleichzeitig ermöglicht die Thermografie eine Beobachtung der Temperaturen beim Lasereingriff und somit das Ableiten von Zusammenhängen zwischen Prozessparametern und Schmelzetemperaturen. Im Rahmen der durchgeführten Untersuchungen wurde ein IR-Kamerasystem erfolgreich als Festeinbau in eine Laser-Sinteranlage integriert und Lösungen für die hierbei auftretenden Probleme erarbeitet. Anschließend wurden Untersuchungen zur Temperaturverteilung auf der Pulverbettoberfläche sowie zu den Einflussfaktoren auf deren Homogenität durchgeführt. In weiteren Untersuchungen wurden die Schmelzetemperaturen in Abhängigkeit verschiedener Prozessparameter ermittelt. Auf Basis dieser Messergebnisse wurden Aussagen über erforderliche Optimierungen getroffen und die Nutzbarkeit der Thermografie beim Laser-Sintern zur Prozessüberwachung, -regelung sowie zur Anlagenwartung als erster Zwischenstand der Untersuchungen bewertet.
A global historical ozone data set and prominent features of stratospheric variability prior to 1979
Resumo:
We present a vertically resolved zonal mean monthly mean global ozone data set spanning the period 1901 to 2007, called HISTOZ.1.0. It is based on a new approach that combines information from an ensemble of chemistry climate model (CCM) simulations with historical total column ozone information. The CCM simulations incorporate important external drivers of stratospheric chemistry and dynamics (in particular solar and volcanic effects, greenhouse gases and ozone depleting substances, sea surface temperatures, and the quasi-biennial oscillation). The historical total column ozone observations include ground-based measurements from the 1920s onward and satellite observations from 1970 to 1976. An off-line data assimilation approach is used to combine model simulations, observations, and information on the observation error. The period starting in 1979 was used for validation with existing ozone data sets and therefore only ground-based measurements were assimilated. Results demonstrate considerable skill from the CCM simulations alone. Assimilating observations provides additional skill for total column ozone. With respect to the vertical ozone distribution, assimilating observations increases on average the correlation with a reference data set, but does not decrease the mean squared error. Analyses of HISTOZ.1.0 with respect to the effects of El Niño–Southern Oscillation (ENSO) and of the 11 yr solar cycle on stratospheric ozone from 1934 to 1979 qualitatively confirm previous studies that focussed on the post-1979 period. The ENSO signature exhibits a much clearer imprint of a change in strength of the Brewer–Dobson circulation compared to the post-1979 period. The imprint of the 11 yr solar cycle is slightly weaker in the earlier period. Furthermore, the total column ozone increase from the 1950s to around 1970 at northern mid-latitudes is briefly discussed. Indications for contributions of a tropospheric ozone increase, greenhouse gases, and changes in atmospheric circulation are found. Finally, the paper points at several possible future improvements of HISTOZ.1.0.
Resumo:
Marine sediments from the Integrated Ocean Drilling Project (IODP) Site U1314 (56.36°N, 27.88°W), in the subpolar North Atlantic, were studied for their planktonic foraminifera, calcium carbonate content, and Neogloboqudrina pachyderma sinistral (sin.) δ13C records in order to reconstruct surface and intermediate conditions in this region during the Mid-Pleistocene Transition (MPT). Variations in the palaeoceanography and regional dynamics of the Arctic Front were estimated by comparing CaCO3 content, planktonic foraminiferal species abundances, carbon isotopes and ice-rafted debris (IRD) data from Site U1314 with published data from other North Atlantic sites. Site U1314 exhibited high abundances of the polar planktonic foraminifera N. pachyderma sin. and low CaCO3 content until Marine Isotope Stage (MIS) 26, indicating a relatively southeastward position of the Arctic Front (AF) and penetration of colder and low-salinity surface arctic water-masses. Changing conditions after MIS 25, with oscillations in the position of the AF, caused an increase in the northward export of the warmer North Atlantic Current (NAC), indicated by greater abundances of non-polar planktonic foraminifera and higher CaCO3. The N. pachyderma sin. δ13C data indicate good ventilation of the upper part of the intermediate water layer in the eastern North Atlantic during both glacial and interglacial stages, except during Terminations 24/23, 22/21 and 20/1. In addition, for N. pachyderma (sin.) we distinguished two morphotypes: non-encrusted and heavily encrusted test. Results indicate that increases in the encrusted morphotype and lower planktonic foraminiferal diversity are related to the intensification of glacial conditions (lower sea-surface temperatures, sea-ice formation) during MIS 22 and 20.
Resumo:
The near-surface wind and temperature regime at three points in the Atacama Desert of northern Chile is described using two-year multi-level measurements from 80-m towers located in an altitude range between 2100 and 2700 m ASL. The data reveal the frequent development of strong nocturnal drainage flows at all sites. Down-valley nose-shaped wind speed profiles are observed with maximum values occurring at heights between 20 m and 60 m AGL. The flow intensity shows considerable inter-daily variability and a seasonal modulation of maximum speeds, which in the cold season can attain hourly average values larger than 20 m s−1. Turbulent mixing appears significant over the full tower layer, affecting the curvature of the nighttime temperature profile and possibly explaining the observed increase of surface temperatures in the down-valley direction. Nocturnal valley winds and temperatures are weakly controlled by upper-air conditions observed at the nearest aerological station. Estimates of terms in the momentum budget for the development and the quasi-stationary phases of the down-valley flows suggest that the pressure gradient force due to the near-surface cooling along the sloping valley axes plays an important role in these drainage flows. A scale for the jet nose height of equilibrium turbulent down-slope jets is proposed, based on surface friction velocity and surface inversion intensity. At one of the sites this scale explains about 70% of the case-to-case observed variance of jet nose heights. Further modeling and observational work is needed, however, in order to better define the dynamics, extent and turbulence structure of this flow system, which has significant wind-energy, climatic and environmental implications.
Resumo:
Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size") against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North America and Eurasia to a cooling of several degrees. In the stratosphere, the strong heating leads to an acceleration of catalytic ozone loss and, consequently, to enhancements of UV radiation at the ground. In contrast to surface temperature and precipitation changes, which show a linear dependence to the soot burden, there is a saturation effect with respect to stratospheric ozone chemistry. Soot emissions of 5 Tg lead to an ozone column reduction of almost 50% in northern high latitudes, while emitting 12 Tg only increases ozone loss by a further 10%. In summary, this study, though using a different chemistry climate model, corroborates the previous investigations with respect to the atmospheric impacts. In addition to these persistent effects, the present study draws attention to episodically cold phases, which would likely add to the severity of human harm worldwide. The best insurance against such a catastrophic development would be the delegitimization of nuclear weapons.
Resumo:
Infrared thermography (IRT) was used to detect digital dermatitis (DD) prior to routine claw trimming. A total of 1192 IRT observations were collected from 149 cows on eight farms. All cows were housed in tie-stalls. The maximal surface temperatures of the coronary band (CB) region and skin (S) of the fore and rear feet (mean value of the maximal surface temperatures of both digits for each foot separately, CBmax and Smax) were assessed. Grouping was performed at the foot level (presence of DD, n=99; absence, n=304), or at the cow level (all four feet healthy, n=24) or where there was at least one DD lesion on the rear feet, n=37). For individual cows (n=61), IRT temperature difference was determined by subtracting the mean sum of CBmax and Smax of the rear feet from that of the fore feet. Feet with DD had higher CBmax and Smax (P<0.001) than healthy feet. Smax was significantly higher in feet with infectious DD lesions (M-stage: M2+M4; n=15) than in those with non-infectious M-lesions (M1+M3; n=84) (P=0.03), but this was not the case for CBmax (P=0.12). At the cow level, an optimal cut-off value for detecting DD of 0.99°C (IRT temperature difference between rear and front feet) yielded a sensitivity of 89.1% and a specificity of 66.6%. The results indicate that IRT may be a useful non-invasive diagnostic tool to screen for the presence of DD in dairy cows by measuring CBmax and Smax.
Resumo:
Arctic environments, where surface temperatures increase and sea ice cover and permafrost depth decrease, are very sensitive to even slight climatic variations. Placing recent environmental change of the high-northern latitudes in a long-term context is, however, complicated by too short meteorological observations and too few proxy records. Driftwood may represent a unique cross-disciplinary archive at the interface of marine and terrestrial processes. Here, we introduce 1445 driftwood remains from coastal East Greenland and Svalbard. Macroscopy and microscopy were applied for wood anatomical classification; a multi-species subset was used for detecting fungi; and information on boreal vegetation patterns, circumpolar river systems, and ocean current dynamics was reviewed and evaluated. Four conifer (Pinus, Larix, Picea, and Abies) and three deciduous (Populus, Salix, and Betula) genera were differentiated. Species-specific identification also separated Pinus sylvestris and Pinus sibirica, which account for ~40% of all driftwood and predominantly originate from western and central Siberia. Larch and spruce from Siberia or North America represents ~26% and ~18% of all materials, respectively. Fungal colonization caused different levels of driftwood staining and/or decay. Our results demonstrate the importance of combining wood anatomical knowledge with insight on boreal forest composition for successfully tracing the origin of Arctic driftwood. To ultimately reconstruct spatiotemporal variations in ocean currents, and to better quantify postglacial uplift rates, we recommend consideration of dendrochronologically dated material from many more circumpolar sites.
Resumo:
Regional climate simulations are conducted using the Polar fifth-generation Pennsylvania State University (PSU)-NCAR Mesoscale Model (MM5) with a 60-km horizontal resolution domain over North America to explore the summer climate of the Last Glacial Maximum (LGM: 21 000 calendar years ago), when much of the continent was covered by the Laurentide Ice Sheet (LIS). Output from a tailored NCAR Community Climate Model version 3 (CCM3) simulation of the LGM climate is used to provide the initial and lateral boundary conditions for Polar MM5. LGM boundary conditions include continental ice sheets, appropriate orbital forcing, reduced CO2 concentration, paleovegetation, modified sea surface temperatures, and lowered sea level. The simulated LGM summer climate is characterized by a pronounced low-level thermal gradient along the southern margin of the LIS resulting from the juxtaposition of the cold ice sheet and adjacent warm ice-free land surface. This sharp thermal gradient anchors the midtropospheric jet stream and facilitates the development of synoptic cyclones that track over the ice sheet, some of which produce copious liquid precipitation along and south of the LIS terminus. Precipitation on the southern margin is orographically enhanced as moist southerly low-level flow (resembling a contemporary, Great Plains low-level jet configuration) in advance of the cyclone is drawn up the ice sheet slope. Composites of wet and dry periods on the LIS southern margin illustrate two distinctly different atmospheric flow regimes. Given the episodic nature of the summer rain events, it may be possible to reconcile the model depiction of wet conditions on the LIS southern margin during the LGM summer with the widely accepted interpretation of aridity across the Great Plains based on geological proxy evidence.