972 resultados para SURFACE RESPONSE
Resumo:
Mode of access: Internet.
Resumo:
1.1 Background and Purpose: Ultrasound guided sciatic nerve blockade has rapid onset but at 24 hours pain is greater than nerve stimulator techniques. Injection of the nerve branches or trunk and sub-sheath blockade increase success and reduce onset times but risk injury. This study mapped needle coordinates for sciatic nerve blockade with nerve stimulation and its relation to postoperative pain scores. 1.2 Method: Angle and distance of the needle tip and infusion catheter from the popliteal sciatic nerve at which stimulated plantar flexion occurred were measured. Pain scores at postanesthesia unit discharge and 24 hours were recorded. 1.3 Results: 81% of opioid naïve patients reported immediate analgesia and 20.8% at 24 hours. In opioid tolerant patients 56.8% reported immediate analgesia and 9.1% at 24 hours. Plantar flexion was observed with the needle in the posterior medial quadrant near the sciatic nerve. Opioid tolerant patients reported adequate analgesia when the needle was located more medially and proximally to the sciatic nerve. 1.4 Conclusion: Stimulated plantar flexion is isolated to a narrow angular range in the posterior medial quadrant adjacent to the sciatic nerve. Opioid tolerant patients report adequate analgesia if the needle and catheter are more medial and proximal to the nerve surface.
Resumo:
Studying landscape evolution of the Earthís surface is difficult because both tectonic forces and surface processes control its response to perturbation, and ultimately, its shape and form. Researchers often use numerical models to study erosional response to deformation because there are rarely natural settings in which we can evaluate both tectonic activity and topographic response over appropriate time scales (103-105 years). In certain locations, however, geologic conditions afford the unique opportunity to study the relationship between tectonics and topography. One such location is along the Dragonís Back Pressure Ridge in California, where the landscape moves over a structural discontinuity along the San Andreas Fault and landscape response to both the initiation and cessation of uplift can be observed. In their landmark study, Hilley and Arrowsmith (2008) found that geomorphic metrics such as channel steepness tracked uplift and that hillslope response lagged behind that of rivers. Ideal conditions such as uniform vegetation density and similar lithology allowed them to view each basin as a developmental stage of response to uplift only. Although this work represents a significant step forward in understanding landscape response to deformation, it remains unclear how these results translate to more geologically complex settings. In this study, I apply similar methodology to a left bend along the San Andreas Fault in the Santa Cruz Mountains, California. At this location, the landscape is translated through a zone of localized uplift caused by the bend, but vegetation, lithology, and structure vary. I examine the geomorphic response to uplift along the San Andreas Fault bend in order to determine whether predicted landscape patterns can be observed in a larger, more geologically complex setting than the Dragonís Back Pressure Ridge. I find that even with a larger-scale and a more complex setting, geomorphic metrics such as channel steepness index remain useful tools for evaluating landscape evolution through time. Steepness indices in selected streams of study record localized uplift caused by the restraining bend, while hillslope adjustment in the form of landsliding occurs over longer time scales. This project illustrates that it is possible to apply concepts of landscape evolution models to complex settings and is an important contribution to the body of geomorphological study.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Aims: An important consideration in the design of a tumour vaccine is the ability of tumour-specific cytotoxic T lymphocytes (CTL) to recognise unmanipulated tumour cells in vivo. To determine whether B-CLL might use an escape strategy, the current studies compared B-CLL and normal B cell MHC class I expression. Methods: Flow cytometry, TAP allele PCR and MHC class I PCR were used. Results: While baseline expression of MHC class I did not differ, upregulation of MHC class I expression by B-CLL cells in response to IFN-gamma was reduced. No deletions or mutations of TAP 1 or 2 genes were detected. B-CLL cells upregulated TAP protein expression in response to IFN-gamma. Responsiveness of B-CLL MHC class I mRNA to IFN-gamma was not impaired. Conclusions: The data suggest that MHC class I molecules might be less stable at the cell surface in B-CLL than normal B cells, as a result of the described release of beta(2)m and beta(2)m-free class I heavy chains from the membrane. This relative MHC class I expression defect of B-CLL cells may reduce their susceptibility to CTL lysis in response to immunotherapeutic approaches.
Resumo:
Immunizing pregnant women with a malaria vaccine is one approach to protecting the mother and her offspring from malaria infection. However, specific maternal Abs generated in response to vaccination and transferred to the fetus may interfere with the infant's ability to respond to the same vaccine. Using a murine model of malaria, we examined the effect of maternal 19-kDa C-terminal region of merozoite surface protein-1 (MSP1(19)) and Plasmodium yoelii Abs on the pups' ability to respond to immunization with MSP1(19). Maternal MSPI,g-specific Abs but not A yoelii-specific Abs inhibited Ab production following MSP1(19) immunization in 2-wk-old pups. This inhibition was correlated with the amount of maternal MSP1(19) Ab present in the pup at the time of immunization and was due to fewer specific B cells. Passively acquired Ab most likely inhibited the development of an Ab response by blocking access to critical B cell epitopes. If a neonate's ability to respond to MSP1(19) vaccination depends on the level of maternal Abs present at the time of vaccination, it may be necessary to delay immunization until Abs specific for the vaccinating Ag have decreased.
Resumo:
A recently developed whole of surface electroplating technique was used to obtain mass-transfer rates in the separated flow region of a stepped rotating cylinder electrode. These data are compared with previously reported mass-transfer rates obtained with a patch electrode. It was found that the two methods yield different results, where at lower Reynolds numbers, the mass-transfer rate enhancement was noticeably higher for the whole of the surface electrode than for the patch electrode. The location of the peak mass transfer behind the step, as measured with a patch electrode, was reported to be independent of the Reynolds number in previous studies, whereas the whole of the surface electrode shows a definite Reynolds number dependence. Large eddy simulation results for the recirculating region behind a step are used in this work to show that this difference in behavior is related to the existence of a much thinner fluid layer at the wall for which the velocity is a linear junction of distance from the wall. Consequently, the diffusion layer no longer lies well within a laminar sublayer. It is concluded that the patch electrode responds to the wall shear stress for smooth wall flow as well as for the disturbed flow region behind the step. When the whole of the surface is electro-active, the response is to mass transfer even when this is not a sole function of wall shear stress. The results demonstrate that the choice of the mass-transfer measurement technique in corrosion studies can have a significant effect on the results obtained from empirical data.
Resumo:
The human melanocortin-1 receptor gene (MC1R) encodes a G-protein coupled receptor that is primarily expressed on melanocytes, where it plays a key role in pigmentation regulation. Variant alleles are associated with red hair colour and fair skin, known as the RHC phenotype, as well as skin cancer risk. The R151C, R160W and D294H alleles, designated 'R', are strongly associated with the RHC phenotype and have been proposed to result in loss of function receptors due to impaired G-protein coupling. We recently provided evidence that the R151C and R160W variants can efficiently couple to G-proteins in response to alpha-melanocyte stimulating hormone. The possibility that altered cellular localization of the R151C and R160W variant receptors could underlie their association with RHC was therefore considered. Using immunofluorescence and ligand binding studies, we found that melanocytic cells exogenously or endogenously expressing MC1R show strong surface localization of the wild-type and D294H alleles but markedly reduced cell surface expression of the R151C and R160W receptors. In additional exogenous expression studies, the R variant D84E and the rare I155T variant, also demonstrated a significant reduction in plasma membrane receptor numbers. The V60L, V92M and R163Q weakly associated RHC alleles, designated 'r', were expressed with normal or intermediate cell surface receptor levels. These results indicate that reduced receptor coupling activity may not be the only contributing factor to the genetic association between the MC1R variants and the RHC phenotype, with MC1R polymorphisms now linked to a change in receptor localization.
Resumo:
Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.
Resumo:
Theoretical developments as well as field and laboratory data have shown the influence of the capillary fringe on water table fluctuations to increase with the fluctuation frequency. The numerical solution of a full, partially saturated flow equation can be computationally expensive. In this paper, the influence of the capillary fringe on water table fluctuations is simplified through its parameterisation into the storage coefficient of a fully-saturated groundwater flow model using the complex effective porosity concept [Nielsen, P., Perrochet, P., 2000. Water table dynamics under capillary fringes: experiments and modelling. Advances in Water Resources 23 (1), 503-515; Nielsen, P., Perrochet, P., 2000. ERRATA: water table dynamics under capillary fringes: experiments and modelling (Advances in Water Resources 23 (2000) 503-515). Advances in Water Resources 23, 907-908]. The model is applied to sand flume observations of periodic water table fluctuations induced by simple harmonic forcing across a sloping boundary, analogous to many beach groundwater systems. While not providing information on the moisture distribution within the aquifer, this approach can reasonably predict the water table fluctuations in response to periodic forcing across a sloping boundary. Furthermore, he coupled ground-surface water model accurately predicts the extent of the seepage face formed at the sloping boundary. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The Thames Estuary, UK, and the Brisbane River, Australia, are comparable in size and catchment area. Both are representative of the large and growing number of the world's estuaries associated with major cities. Principle differences between the two systems relate to climate and human population pressures. In order to assess the potential phytotoxic impact of herbicide residues in the estuaries, surface waters were analysed with a PAM fluorometry-based bioassay that employs the photosynthetic efficiency (photosystem II quantum yield) of laboratory cultured microalgae, as an endpoint measure of phytotoxicity. In addition, surface waters were chemically analysed for a limited number of herbicides. Diuron atrazine and simazine were detected in both systems at comparable concentrations. In contrast, bioassay results revealed that whilst detected herbicides accounted for the observed phytotoxicity of Brisbane River extracts with great accuracy, they consistently explained only around 50% of the phytotoxicity induced by Thames Estuary extracts. Unaccounted for phytotoxicity in Thames surface waters is indicative of unidentified phytotoxins. The greatest phytotoxic response was measured at Charing Cross, Thames Estuary, and corresponded to a diuron equivalent concentration of 180 ng L-1. The study employs relative potencies (REP) of PSII impacting herbicides and demonstrates that chemical analysis alone is prone to omission of valuable information. Results of the study provide support for the incorporation of bioassays into routine monitoring programs where bioassay data may be used to predict and verify chemical contamination data, alert to unidentified compounds and provide the user with information regarding cumulative toxicity of complex mixtures. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Previous research has shown that the postural configuration adopted by a subject, such as active leaning, influences the postural response to an unpredictable support surface translation. While those studies have examined large differences in postural conditions, it is of additional interest to examine the effects of naturally occurring changes in standing posture. Thus, it was hypothesized that the normal postural sway observed during quiet standing would affect the responses to an unpredictable support surface translation. Seventeen young adults stood quietly on a moveable platform and were perturbed in either the forward or backward direction when the location of the center of pressure (COP) was either 1.5 standard deviations anterior or posterior to the mean baseline COP signal. Postural responses, in the form of electromyographic (EMG) latencies and amplitudes, were recorded from lower limb and trunk muscles. When the location of the COP at the time of the translation was in the opposite, as compared to the same, direction as the upcoming translation, there was a significantly earlier onset of the antagonists (10-23%, i.e. 15-45 ms) and a greater EMG amplitude (14-39%) in four of the six recorded muscles. Stepping responses were most frequently observed during trials where the position of the COP was opposite to the direction of the translation. The results support the hypothesis that postural responses to unpredictable support surface translations are influenced by the normal movements of postural sway. The results may help to explain the large variability of postural responses found between past studies.