958 resultados para SOX 6 gene
Resumo:
The milk is an important food because it contents Conjugated Linoleic Acids (CIA). These fatty acids are synthesized in mammary gland under action of the enzyme Stearoyl CoA-Desaturase (SCD) and have showed some positive effects in human disease prevention and treatments. A variation of CLA in milk fat exists and can be partially explained by the different levels of expression of SCD. The aim was to study part of the encoding regions of SCD's gene using PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism). Genomic DNA was extracted from lactating Murrah females. After this, PCR reactions were made by using primers Z (sic) (sic) D1 that encloses exon I, II and intron I. The fragments amplified are composed by 938 pb. Then, RFLP techniques were applied in the fragments using the restriction enzymes Pst I and Sma I. The enzyme Pst I has generated fragments of 788pb and 150bp and the Sma I has generated fragments of 693pb and 245pb. All the animals showed the same migration standard for both enzymes, characterizing a genetic monomorphism for this region of SCD gene. The analysis determined that there aren't genetic differences between these animals in the studied regions by using Pst I and Sma I enzymes.
Resumo:
Currently, the major drawback of gene therapy is the gene transfection rate. The two main types of vectors that. are used in gene therapy are based on viral or non-viral gene delivery systems. There are several non-viral systems that can be used to transfer foreign genetic material into the human body. In order to do so, the DNA to be transferred must escape the processes that affect the disposition of macromolecules. These processes include the interaction with blood components, vascular endothelial cells and uptake by the reticuloendothelial system. Furthermore, the degradation of therapeutic DNA by serum nucleases is also a potential obstacle for functional delivery to the target cell. Cationic polymers have a great potential for DNA complexation and may be useful as non-viral vectors for gene therapy applications. The objective of this review was to address the state of the art in gene therapy using synthetic and natural polycations and the latest strategies to improve the efficiency of gene transfer into the cell.
Resumo:
Background and Objectives. Thrombin activatable fibrinolysis inhibitor (TAFI) plays an important role in hemostasis, functioning as a potent fibrinolysis inhibitor. TAFI gene variations may contribute to plasma TAFI levels and thrombotic risk.Design and Methods. We sequenced a 2083-bp region of the 5 ' -regulatory region of the TAFI gene in 127 healthy subjects searching for variations, and correlated identified polymorphisms with plasma TAFI levels. TAFI polymorphisms were examined as risk factors for venous thrombosis by determining their prevalence in 388 patients with deep venous thrombosis (DVT) and in 388 controls.Results. Seven novel polymorphisms were identified: -152 A/G, -438 A/G, -530 C/T, -1053 T/C, -1102 T/G, -1690 G/A, and -1925 T/C. -152 A/G, -530 C/T and -1925 T/C were found to be in strong linkage disequilibrium, as were the -438 A/G, -1053 T/C, -1102 T/G and -1690 G/A, Plasma TAFI levels were higher in -43866/-1053CC/-1102GG/-1690AA homozygotes than In -438AG/-1053TC/-1102TG/-1690GA heterozygotes, and -438AA/-1053TT/-1102TT/-1690GG homozygotes had the lowest TAFI levels (p=0.0003). TAFI concentrations in -152AA/-530CC/-1925TT homozygotes were somewhat higher but not significantly different from levels observed for -152AG/-530CT/-1925TC heterozygotes, Taken in combination, -438AG/-1053TC/-1102TG/-1690GA and -438AA/-1053TT/-1102TT/-1690GG yielded an OR for DVT of 0.8 (95%CI: 0.6-1). in subjects aged < 35 years the OR was 0.7 (95%CI: 0.5-1.1), the OR for -152AG/-530CT/-1925TC was 1 (95%CI: 0.5-2.2) in the whole group of patients and controls, whereas in subjects aged <35 years the OR was 0.1 (95%CI: 0.02-0.9).Interpretation and Conclusions. Polymorphisms in the TAFI promoter determine plasma antigen levels and may influence the risk of venous thrombophilia. <(c)>2001, Ferrata Storti Foundation.
Resumo:
Objective and design: We have previously reported a role for annexin-A1 in liver proliferation and tumorogenicity as well as its action as an acute phase protein in a model of endotoxemia in interleukin-6 null mice.Material and methods: In this study, we have investigated the analysis of the gene and protein expression in annexin-A1 null mice and the wild type livers during foetal and adult life, and in the presence of a proinflammatory stimulus.Results: The data indicate a link between the expression of the annexin-A1 as serine-phosphorylated-protein during early events of the inflammatory response and as tyrosine-phosphorylated-form at later time-points, during the resolution of inflammation.Conclusions: The study of annexin-A1 post-translation modification may promote a new annexin-A1 peptide discovery programme to treat specific pathologies.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In a study of the causes of abortion and stillbirth in a Holstein-Friesian herd, the most probable cause detected was a lethal gene transmitted through the pedigree line. Findings of this nature have already been reported both in the United States and Canada for the same line. Replacing the sires with others solved the problem, thus demonstrating a genetic etiology for abortion and stillbirth in this lineage. The differences noted in the time of fetal mortality may indicate the action of more than one gene or variable expressivity of the mutant gene. The importance of the data is discussed in terms of the elimination of genetic factors that cause fetal mortality. © 1985.
Resumo:
Purpose: Considering the importance of type beta thalassaemias as hereditary syndromes of high significance in different populations of Mediterranean origin and, by extension, in the Brazilian population, the objective of the present study was to determine by PCR/DGGE the gene structures responsible for neutral polymorphisms (frameworks) observed in the human beta globin gene associated with the mutations responsible for type beta thalassaemias in a sample of the Brazilian population and, more specifically, of the population of the State of São Paulo. Patients and methods: Thirty individuals with beta thalassaemic mutations were analyzed: 22 mutations were in codon 39 (C->T), 5 in IVS1-110 (G->A), 2 in IVS1-6 (T->C) and 1 in IVS1-1 (G->A). DNA was extracted and selective amplification was performed by PCR extending from position IVS1 nt 46 to IVS2 nt 126 (474 pb). The product was then analyzed by polyacrylamide gel electrophoresis on a denaturing 10-60% urea/formamide gradient. Results: The results demonstrated that, as expected, the mutations responsible for type beta thalassaemia observed in this population are of Mediterranean origin, with 73% distribution represented by codon 39,17% by IVS1-110, 7% by IVS1-6 and 3% by IVS1-1. In turn, framework distribution seems to indicate a higher frequency of Fr 1-1 in codon 39 and IVS1-110, of Fr 1-3 in IVS1-6 and of Fr 1-2 in IVS1-1. Conclusions: These results permit us to conclude that gene amplification by PCR followed by DGGE is an appropriate method for the separation of DNA molecules that differ even by a single base change and therefore can be utilized to detect the alterations observed in the human beta globin gene. This methodology shows that, using only a pair of primers, it is possible to define the frameworks that are observed in the beta globin gene.
Resumo:
The inflammatory response is a protective process of the body to counteract xenobiotic penetration and injury, although in disease this response can become deregulated. There are endogenous biochemical pathways that operate in the host to keep inflammation under control. Here we demonstrate that the counter-regulator annexin 1 (AnxA1) is critical for controlling experimental endotoxemia. Lipopolysaccharide (LPS) markedly activated the AnxA1 gene in epithelial cells, neutrophils, and peritoneal, mesenteric, and alveolar macrophages-cell types known to function in experimental endotoxemia. Administration of LPS to AnxA1-deficient mice produced a toxic response characterized by organ injury and lethality within 48 hours, a phenotype rescued by exogenous application of low doses of the protein. In the absence of AnxA1, LPS generated a deregulated cellular and cytokine response with a marked degree of leukocyte adhesion in the microcirculation. Analysis of LPS receptor expression in AnxA1-null macrophages indicated an aberrant expression of Toll-like receptor 4. In conclusion, this study has detailed cellular and biochemical alterations associated with AnxA1 gene deletion and highlighted the impact of this protective circuit for the correct functioning of the homeostatic response to sublethal doses of LPS. Copyright © American Society for Investigative Pathology.
Resumo:
Increased GLUT2 gene expression in the renal proximal tubule of diabetic rats is an adaptive condition, which may be important in the diabetic nephropathy development. We investigated the effects of insulin treatment upon the renal GLUT2 overexpression of diabetic rats. Acute treatment, surprisingly, induced a rapid further increase in GLUT2 mRNA content. Twelve hours after insulin injection, GLUT2 mRNA was twice the value of saline-injected rats (P < 0.001), when GLUT2 protein remained unchanged. In response to short-term treatment, both GLUT2 mRNA and protein were increased in 1-day treated rats (P < 0.05 versus saline-injected), decreasing after that, and reaching, within 6 days, values close to those of non-diabetic rats. Concluding, insulin treatment induced: initially, an additional upregulation of GLUT2 gene expression, involving posttranscriptional modulation; thereafter, downregulation of GLUT2 expression, which returns to non-diabetic levels. The former may be related to increased insulin concentration, the latter may be due to glycemic control. © 2005 Elsevier B.V. All rights reserved.
Resumo:
In order to assess a new strategy of DNA vaccine for a more complete understanding of its action in immune response, it is important to determine the in vivo biodistribution fate and antigen expression. In previous studies, our group focused on the prophylactic and therapeutic use of a plasmid DNA encoding the Mycobacterium leprae 65-kDa heat shock protein (Hsp65) and achieved an efficient immune response induction as well as protection against virulent M. tuberculosis challenge. In the present study, we examined in vivo tissue distribution of naked DNA-Hsp65 vaccine, the Hsp65 message, genome integration and methylation status of plasmid DNA. The DNA-Hsp65 was detectable in several tissue types, indicating that DNA-Hsp65 disseminates widely throughout the body. The biodistribution was dose-dependent. In contrast, RT-PCR detected the Hsp65 message for at least 15 days in muscle or liver tissue from immunized mice. We also analyzed the methylation status and integration of the injected plasmid DNA into the host cellular genome. The bacterial methylation pattern persisted for at least 6 months, indicating that the plasmid DNA-Hsp65 does not replicate in mammalian tissue, and Southern blot analysis showed that plasmid DNA was not integrated. These results have important implications for the use of DNA-Hsp65 vaccine in a clinical setting and open new perspectives for DNA vaccines and new considerations about the inoculation site and delivery system. © 2006 Coelho-Castelo et al; licensee BioMed Central Ltd.
Resumo:
The simultaneous existence of alternative oxidases and uncoupling proteins in plants has raised the question as to why plants need two energy-dissipating systems with apparently similar physiological functions. A probably complete plant uncoupling protein gene family is described and the expression profiles of this family compared with the multigene family of alternative oxidases in Arabidopsis thaliana and sugarcane (Saccharum sp.) employed as dicot and monocot models, respectively. In total, six uncoupling protein genes, AtPUMP1-6, were recognized within the Arabidopsis genome and five (SsPUMP1-5) in a sugarcane EST database. The recombinant AtPUMP5 protein displayed similar biochemical properties as AtPUMP1. Sugarcane possessed four Arabidopsis AOx1-type orthologues (SsAOx1a-1d); no sugarcane orthologue corresponding to Arabidopsis AOx2-type genes was identified. Phylogenetic and expression analyses suggested that AtAOx1d does not belong to the AOx1-type family but forms a new (AOx3-type) family. Tissue-enriched expression profiling revealed that uncoupling protein genes were expressed more ubiquitously than the alternative oxidase genes. Distinct expression patterns among gene family members were observed between monocots and dicots and during chilling stress. These findings suggest that the members of each energy-dissipating system are subject to different cell or tissue/organ transcriptional regulation. As a result, plants may respond more flexibly to adverse biotic and abiotic conditions, in which oxidative stress is involved. © The Author [2006]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.