925 resultados para SHOCK-WAVE LITHOTRIPSY
Resumo:
A shock capturing scheme is presented for the equations of isentropic flow based on upwind differencing applied to a locally linearized set of Riemann problems. This includes the two-dimensional shallow water equations using the familiar gas dynamics analogy. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency, leading to arithmetic averaging. This is in contrast to usual ‘square root’ averages found in this type of Riemann solver where the computational expense can be prohibitive. The scheme is applied to a two-dimensional dam-break problem and the approximate solution compares well with those given by other authors.
Resumo:
An efficient algorithm is presented for the solution of the steady Euler equations of gas dynamics. The scheme is based on solving linearised Riemann problems approximately and in more than one dimension incorporates operator splitting. The scheme is applied to a standard test problem of flow down a channel containing a circular arc bump for three different mesh sizes.
Resumo:
A finite difference scheme based on flux difference splitting is presented for the solution of the Euler equations for the compressible flow of an ideal gas. A linearised Riemann problem is defined, and a scheme based on numerical characteristic decomposition is presented for obtaining approximate solutions to the linearised problem. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency, leading to arithmetic averaging. This is in contrast to the usual ‘square root’ averages found in this type of Riemann solver, where the computational expense can be prohibitive. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids nonphysical, spurious oscillations. The scheme is applied to a shock tube problem and a blast wave problem. Each approximate solution compares well with those given by other schemes, and for the shock tube problem is in agreement with the exact solution.
Resumo:
A numerical scheme is presented for the solution of the Euler equations of compressible flow of a gas in a single spatial co-ordinate. This includes flow in a duct of variable cross-section as well as flow with slab, cylindrical or spherical symmetry and can prove useful when testing codes for the two-dimensional equations governing compressible flow of a gas. The resulting scheme requires an average of the flow variables across the interface between cells and for computational efficiency this average is chosen to be the arithmetic mean, which is in contrast to the usual ‘square root’ averages found in this type of scheme. The scheme is applied with success to five problems with either slab or cylindrical symmetry and a comparison is made in the cylindrical case with results from a two-dimensional problem with no sources.
Resumo:
Abstract A finite difference scheme is presented for the solution of the two-dimensional shallow water equations in steady, supercritical flow. The scheme incorporates numerical characteristic decomposition, is shock capturing by design and incorporates space-marching as a result of the assumption that the flow is wholly supercritical in at least one space dimension. Results are shown for problems involving oblique hydraulic jumps and reflection from a wall.
Resumo:
A finite difference scheme is presented for the solution of the two-dimensional equations of steady, supersonic, isentropic flow. The scheme incorporates numerical characteristic decomposition, is shock-capturing by design and incorporates space marching as a result of the assumption that the flow is wholly supersonic in at least one space dimension. Results are shown for problems involving oblique hydraulic jumps and reflection from a wall.
Resumo:
We use a spectral method to solve numerically two nonlocal, nonlinear, dispersive, integrable wave equations, the Benjamin-Ono and the Intermediate Long Wave equations. The proposed numerical method is able to capture well the dynamics of the solutions; we use it to investigate the behaviour of solitary wave solutions of the equations with special attention to those, among the properties usually connected with integrability, for which there is at present no analytic proof. Thus we study in particular the resolution property of arbitrary initial profiles into sequences of solitary waves for both equations and clean interaction of Benjamin-Ono solitary waves. We also verify numerically that the behaviour of the solution of the Intermediate Long Wave equation as the model parameter tends to the infinite depth limit is the one predicted by the theory.
Resumo:
We analyze a fully discrete spectral method for the numerical solution of the initial- and periodic boundary-value problem for two nonlinear, nonlocal, dispersive wave equations, the Benjamin–Ono and the Intermediate Long Wave equations. The equations are discretized in space by the standard Fourier–Galerkin spectral method and in time by the explicit leap-frog scheme. For the resulting fully discrete, conditionally stable scheme we prove an L2-error bound of spectral accuracy in space and of second-order accuracy in time.
Resumo:
A program is provided to determine structural parameters of atoms in or adsorbed on surfaces by refinement of atomistic models towards experimentally determined data generated by the normal incidence X-ray standing wave (NIXSW) technique. The method employs a combination of Differential Evolution Genetic Algorithms and Steepest Descent Line Minimisations to provide a fast, reliable and user friendly tool for experimentalists to interpret complex multidimensional NIXSW data sets.
Resumo:
A theoretical framework is developed for the evolution of baroclinic waves with latent heat release parameterized in terms of vertical velocity. Both wave–conditional instability of the second kind (CISK) and large-scale rain approaches are included. The new quasigeostrophic framework covers evolution from general initial conditions on zonal flows with vertical shear, planetary vorticity gradient, a lower boundary, and a tropopause. The formulation is given completely in terms of potential vorticity, enabling the partition of perturbations into Rossby wave components, just as for the dry problem. Both modal and nonmodal development can be understood to a good approximation in terms of propagation and interaction between these components alone. The key change with moisture is that growing normal modes are described in terms of four counterpropagating Rossby wave (CRW) components rather than two. Moist CRWs exist above and below the maximum in latent heating, in addition to the upper- and lower-level CRWs of dry theory. Four classifications of baroclinic development are defined by quantifying the strength of interaction between the four components and identifying the dominant pairs, which range from essentially dry instability to instability in the limit of strong heating far from boundaries, with type-C cyclogenesis and diabatic Rossby waves being intermediate types. General initial conditions must also include passively advected residual PV, as in the dry problem.
Resumo:
This paper describes the impact of changing the current imposed ozone climatology upon the tropical Quasi-Biennial Oscillation (QBO) in a high top climate configuration of the Met Office U.K. general circulation model. The aim is to help distinguish between QBO changes in chemistry climate models that result from temperature-ozone feedbacks and those that might be forced by differences in climatology between previously fixed and newly interactive ozone distributions. Different representations of zonal mean ozone climatology under present-day conditions are taken to represent the level of change expected between acceptable model realizations of the global ozone distribution and thus indicate whether more detailed investigation of such climatology issues might be required when assessing ozone feedbacks. Tropical stratospheric ozone concentrations are enhanced relative to the control climatology between 20–30 km, reduced from 30–40 km and enhanced above, impacting the model profile of clear-sky radiative heating, in particular warming the tropical stratosphere between 15–35 km. The outcome is consistent with a localized equilibrium response in the tropical stratosphere that generates increased upwelling between 100 and 4 hPa, sufficient to account for a 12 month increase of modeled mean QBO period. This response has implications for analysis of the tropical circulation in models with interactive ozone chemistry because it highlights the possibility that plausible changes in the ozone climatology could have a sizable impact upon the tropical upwelling and QBO period that ought to be distinguished from other dynamical responses such as ozone-temperature feedbacks.
Resumo:
The fabrication and characterization of micromachined reduced-height air-filled rectangular waveguide components suitable for integration is reported in this paper. The lithographic technique used permits structures with heights of up to 100 μm to be successfully constructed in a repeatable manner. Waveguide S-parameter measurements at frequencies between 75-110 GHz using a vector network analyzer demonstrate low loss propagation in the TE10 mode reaching 0.2 dB per wavelength. Scanning electron microscope photographs of conventional and micromachined waveguides show that the fabrication technique can provide a superior surface finish than possible with commercially available components. In order to circumvent problems in efficiently coupling free-space propagating beams to the reduced-height G-band waveguides, as well as to characterize them using quasi-optical techniques, a novel integrated micromachined slotted horn antenna has been designed and fabricated, E-, H-, and D-plane far-field antenna pattern measurements at different frequencies using a quasi-optical setup show that the fabricated structures are optimized for 180-GHz operation with an E-plane half-power beamwidth of 32° elevated 35° above the substrate, a symmetrical H-plane pattern with a half-power beamwidth of 23° and a maximum D-plane cross-polar level of -33 dB. Far-field pattern simulations using HFSS show good agreement with experimental results.
Resumo:
The first measurement of the relative permittivity (εr) and loss tangent (tan δ) of EPON™ SU-8 advanced thick film ultraviolet photoresist is reported at frequencies between 75–110 GHz (W-band). The problems associated with such a measurement are discussed, an error analysis given, and values of εr=1.725±0.08 and tanδ =0.02±0.001 are determined.
Resumo:
A new technique is reported for micro-machining millimetre-wave rectangular waveguide components. S-parameter measurements on these structures show that they achieve lower loss than those produced using any other on-chip fabrication technique, have highly accurate dimensions, are physically robust, and are cheap and easy to manufacture.