906 resultados para SENSITIVE K CHANNEL
Resumo:
Through modelling of direct error computation, a reduction of pattern- dependent errors in a standard fiber-based transmission link at 40 Gb/s rate is demonstrated by application of a skewed data pre-encoding. The trade-off between the bit-error rate improvement and the data rate loss is examined.
Resumo:
Aim - The aim of the study was to determine the potential for KV1 potassium channel blockers as inhibitors of human neoinitimal hyperplasia. Methods and results - Blood vessels were obtained from patients or mice and studied in culture. Reverse transcriptasepolymerase chain reaction and immunocytochemistry were used to detect gene expression. Whole-cell patch-clamp, intracellular calcium measurement, cell migration assays, and organ culture were used to assess channel function. KV1.3 was unique among the KV1 channels in showing preserved and up-regulated expression when the vascular smooth muscle cells switched to the proliferating phenotype. There was strong expression in neointimal formations. Voltage-dependent potassium current in proliferating cells was sensitive to three different blockers of KV1.3 channels. Calcium entry was also inhibited. All three blockers reduced vascular smooth muscle cell migration and the effects were non-additive. One of the blockers (margatoxin) was highly potent, suppressing cell migration with an IC of 85 pM. Two of the blockers were tested in organ-cultured human vein samples and both inhibited neointimal hyperplasia. Conclusion - KV1.3 potassium channels are functional in proliferating mouse and human vascular smooth muscle cells and have positive effects on cell migration. Blockers of the channels may be useful as inhibitors of neointimal hyperplasia and other unwanted vascular remodelling events. © 2010 The Author.
Resumo:
We numerically demonstrate the feasibility of return-to-zero differential phase-shift keying transmission at 8.0 Gbit/s channel rate using cascaded in-line semiconductor optical amplifiers.
Resumo:
Through direct modeling, a reduction of pattern-dependent errors in a standard fiber-based transmission link at 40 Gbits/s rate is demonstrated by application of a skewed data pre-encoding. The trade-off between the improvement of the bit error rate and the loss in the data rate is examined. © 2007 Optical Society of America.
Resumo:
We propose a computationally efficient method to the per-channel dispersion optimisation applied to 50 GHz-spaced N × 20-Gbit/s wavelength division multiplexing return-to-zero differential phase shift keying transmission in non-zero dispersion-shifted fibre based submarine systems. Crown Copyright © 2010.
Resumo:
We have studied Co60 gamma-irradiation effect on the characteristics of Type IA fiber Bragg gratings. A record Bragg peak shift of 190 pm was observed for a grating written in Fibercore PS-1250/1500 photosensitive fiber at a radiation dose of 116 kGy. Type IA and Type I gratings show different kinetics under radiation and during post-radiation annealing, which can be used for the design of a grating based dosimetry system.
Resumo:
We numerically demonstrate the feasibility of return-to-zero differential phase-shift keying transmission at 80 Gbit/s channel rate using cascaded in-line semiconductor optical amplifiers.
Resumo:
Through modelling of direct error computation, a reduction of pattern- dependent errors in a standard fiber-based transmission link at 40 Gb/s rate is demonstrated by application of a skewed data pre-encoding. The trade-off between the bit-error rate improvement and the data rate loss is examined.
Resumo:
Through extensive direct modelling we quantify the error statistics and patterning effects in a WDM RZ-DBPSK SMF/DCF fibre link using hybrid Raman/ EDFA amplification at 40 Gbit/s channel rate. We examine the BER improvement through skewed channel pre-coding reducing the frequency of appearance of the triplets 101 and 010 in a long data stream. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Summary form only given. In this paper an important new example of a system with strong and nontrivial patterning effects is presented. There has been much interest lately in the implementation of the differential phase shift-keying (PSK) modulation format for long-haul and ultra long-haul fibre communications and, in particular, the differential binary PSK (DBPSK) modulation format, where data is encoded into the optical phase. The results of a direct computation of the error statistics for an SMF/DCF RZ-DBPSK 5-channel WDM RZ-DBPSK link with hybrid Raman/EDFA amplification at 40 Gbit/s per channel, with a channel separation of 100 GHz are presented. The statistics of bit triplets and quantify strong pattern-dependent ISI are obtained.
Resumo:
We develop an analytical method for optimizing phase sensitive amplifiers for regeneration in multilevel phase encoded transmission systems. The model accurately predicts the optimum transfer function characteristics and identifies operating tolerances for different signal constellations and transmission scenarios. The results demonstrate the scalability of the scheme and show the significance of having simultaneous optimization of the transfer function and the signal alphabet. The model is general and can be applied to any regenerative system. © 2013 Optical Society of America.
Resumo:
Using the integrable nonlinear Schrodinger equation (NLSE) as a channel model, we describe the application of nonlinear spectral management for effective mitigation of all nonlinear distortions induced by the fiber Kerr effect. Our approach is a modification and substantial development of the so-called eigenvalue communication idea first presented in A. Hasegawa, T. Nyu, J. Lightwave Technol. 11, 395 (1993). The key feature of the nonlinear Fourier transform (inverse scattering transform) method is that for the NLSE, any input signal can be decomposed into the so-called scattering data (nonlinear spectrum), which evolve in a trivial manner, similar to the evolution of Fourier components in linear equations. We consider here a practically important weakly nonlinear transmission regime and propose a general method of the effective encoding/modulation of the nonlinear spectrum: The machinery of our approach is based on the recursive Fourier-type integration of the input profile and, thus, can be considered for electronic or all-optical implementations. We also present a novel concept of nonlinear spectral pre-compensation, or in other terms, an effective nonlinear spectral pre-equalization. The proposed general technique is then illustrated through particular analytical results available for the transmission of a segment of the orthogonal frequency division multiplexing (OFDM) formatted pattern, and through WDM input based on Gaussian pulses. Finally, the robustness of the method against the amplifier spontaneous emission is demonstrated, and the general numerical complexity of the nonlinear spectrum usage is discussed. © 2013 Optical Society of America.
Resumo:
We summarize the results of our recent demonstration of the first multi-channel regenerator for phase encoded signals. By developing a novel inline phase sensitive amplification scheme simultaneous suppression of deterministic phase distortion on two independent 42.66 Gbit/s DPSK modulated signal wavelengths was achieved. © 2012 SEE.
Resumo:
We report an experimental comparison between broadband fibre Bragg gratings (FBGs) and conventional dispersion compensating fibre (DCF) for a 40 x 10Gb/s DWDM system over 525km. A performanceoptimised configuration using FBG compensators is presented.
Resumo:
We have examined the statistics of simulated bit-error rates in optical transmission systems with strong patterning effects and have found strong correlation between the probability of marks in a pseudorandom pattern and the error-free transmission distance. We discuss how a reduced density of marks can be achieved by preencoding optical data.