986 resultados para SATELLITES, ATMOSPHERES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tin on the oxide form, alone or doped with others metals, has been extensively used as gas sensor, thus, this work reports on the preparation and kinetic parameters regarding the thermal decomposition of Sn(II)-ethylenediaminetetraacetate as precursor to SnO2. Thus, the acquaintance with the kinetic model regarding the thermal decomposition of the tin complex may leave the door open to foresee, whether it is possible to get thin film of SnO2 using Sn(II)-EDTA as precursor besides the influence of dopants added.The Sn(II)-EDTA soluble complex was prepared in aqueous medium by adding of tin(II) chloride acid solution to equimolar amount of ammonium salt from EDTA under N-2 atmosphere and temperature of 50degreesC arising the pH similar to 4. The compound was crystallized in ethanol at low-temperature and filtered to eliminate the chloride ions, obtaining the heptacoordinated chelate with the composition H2SnH2O(CH2N(CH2COO)(2))(2).0.5H(2)O.Results from TG, DTG and DSC curves under inert and oxidizing atmospheres indicate the presence of water coordinated to the metal and that the ethylenediamine fraction is thermally more stable than carboxylate groups. The final residue from thermal decomposition was the SnO2 characterized by X-ray as a tetragonal rutile phase.Applying the isoconversional Wall-Flynn-Ozawa method on the DSC curves, average activation energy: E-a = 183.7 +/- 12.7 and 218.9 +/- 2.1 kJ mol(-1), and pre-exponential factor: log A = 18.85 +/- 0.27 and 19.10 +/- 0.27 min(-1), at 95% confidence level, could be obtained, regarding the loss of coordinated water and thermal decomposition of the carboxylate groups, respectively. The E-a and logA also could be obtained applying isoconventional Wall-Flynn method on the TG curves.From E-a and log A values, Dollimore and Malek procedures could be applied suggesting R3 (contracting volume) and SB (two-parameter model) as the kinetic model to the loss of coordinated water (177-244degreesC) and thermal decomposition of the carboxylate groups (283-315degreesC), respectively. Simulated and experimental normalized DTG and DSC curves besides analysis of residuals check these kinetic models. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses some advances in research conducted on SnO2-based electroceramics. The addition of different dopants, as well as several thermal treatments in oxidizing and inert atmospheres, were found to influence the microstructure and electrical properties of SnO2-based varistor ceramics. Measurements taken by impedance spectroscopy revealed variations in the height and width of the potential barrier resulting from the atmosphere in which thermal treatments were performed. High nonlinear coefficient values, which are characteristic of high-voltage and commercial ZnO varistors, were obtained for these SnO2-based systems. All the systems developed here have potentially promising varistor applications. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we have investigated a region of direct stable orbits around the Moon, whose stability is related to the H2 Family of periodic orbits and to the quasi-periodic orbits that oscillate around them. The stability criteria adopted was that the path did not escape from the Moon during an integration period of 1000 days (remaining with negative two-body Moon-probe orbital energy during this period). Considering the three-dimensional four-body Sun-Earth-Moon-probe problem, we investigated the evolution of the size of the stability region, taking into account the eccentricity of the Earth's orbit, the eccentricity and inclination of the Moon's orbit, and the solar radiation pressure on the probe. We also investigated the evolution of the region's size and its location by varying the inclination of the probe's initial osculating orbit relative to the Moon's orbital plane between 0 degrees and 180 degrees. The size of the stability region diminishes; nevertheless, it remains significant for 0 <= i <= 25 degrees and 35 degrees <= i <= 45 degrees. The orbits of this region could be useful for missions by space vehicles that must remain in orbit around the Moon for periods of up to 1000 days, requiring low maintenance costs. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Karyotype analysis of 21 samples of 11 species of Eleocharis ( Cyperaceae) from 10 localities in Brazil, showed the presence of chromosomes without primary constrictions and parallel movement of chromatids at metaphase-anaphase transition. Only the terminal nucleolar constrictions ( satellites) were visualised. The chromosome numbers varied from 2n=6 in E. subarticulata to 2n=54 in E. acutangula, but the chromosome basic number x=5 was confirmed. Generally, C-CMA(3)(+) bands appear mostly in the extremities of the chromosomes, associated to NOR, and interstitial C-CMA(3) bands were found only in E. geniculata and E. acutangula. C-DAPI(+) bands were not found. Fluorescence in situ hybridisation ( FISH) with the 45S rDNA probe was performed in five species. The results showed from four to eight hybridisation signals, always terminal. The analysed species include representatives of the following three subgenera of Eleocharis that occur in Brazil: Limnochloa, Scirpidium and Eleocharis. Species from the subgenus Limnochloa have small and numerous chromosomes. The remaining species, belonging to subgenera Eleocharis and Scirpidium, possess fewer and larger chromosomes. In subgenus Eleocharis, karyotypes of the section Eleocharis were differentiated by symploidy, agmatoploidy and polyploidy, whereas species of the section Eleogenus were all polyploids. Polyploidy seems to be the most frequent event in the karyotype differentiation in Eleocharis, but changes in the chromosome size and repetitive DNA sites were also observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis, characterization, and thermal behavior of transition metal oxamates, M(NH(2)C(2)O(3))(2)center dot nH(2)O (M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II)), as well as the thermal behavior of oxamic acid and its sodium salt (NaNH(2)C(2)O(3)) were investigated employing simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), experimental and theoretical infrared spectroscopy, TG-DSC coupled to FTIR, elemental analysis and complexometry. The results led to information about the composition, dehydration, thermal stability, thermal decomposition, as well as of the gaseous products evolved during the thermal decomposition of these compounds in dynamic air and N(2) atmospheres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the performance of a-C: H films produced by the hybrid Plasma Immersion Ion Implantation and Deposition technique as lubricating layers for a steel forming tool has been investigated. Hardened steel (AISI M2, 64 HRC) plates coated with a commercial TiN layer were used as substrates and the films were deposited in a vacuum chamber fitted with two parallel-plate electrodes. The discharges were generated in atmospheres composed of 91% C2H2 and 9% Ar by the application of radiofrequency power (13.56 MHz, 100 W) to the upper electrode while the lower one, also used as the sample holder, was biased with high voltage negative pulses (3.6 kV, 30 mu s, 300 Hz). A deposition time of 840 s was used. The effects of the gas pressure, p, on thickness, molecular structure, wettability, surface morphology and topography, hardness and friction coefficient of the films lwere investigated. Film thickness increased from 0.3 to 0.5 mu m when p was increased from 2.7 to 16.5 Pa. Generally, the films were slightly hydrophilic, with contact angles of around 84 degrees, and the deposition decreased the roughness of the steel. A polymer-like structure was detected in high pressure depositions and an amorphous carbon structure derived from the low pressure procedures. Hardness decreased from 8.2 to 7.0 GPa with increasing p. Improvement in tribological performance was indicated by the fall in the friction coefficient from 0.5 to 0.2 as the deposition pressure was reduced. Operating at the latter value (of mu) would lead to a significant reduction in wear and hence to significant economy in diverse industrial applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reviews the influence of particle size distribution, agglomerates, rearrangement, sintering atmospheres and impurities on the pore evolution of some commonly studied oxides. These factors largely affect sintering mechanisms due to modifications of diffusion coefficients or evaporation-condensation. Very broad particle size distribution leads to grain growth and agglomerates densify first. Rearrangement of particles due to neck asymmetry mainly in the early stage of sintering is responsible for a high rate of densification in the first minutes of sintering by collapse of large pores. Sintering atmospheres play an important role in both densification and pore evolution. The chemical interaction of water molecules with several oxides like MgO, ZnO and SnO2 largely affects surface diffusion. As a consequence, there is an increase in the rates of pore growth and densification for MgO and ZnO and in the rate of pore growth for SnO2. Carbon dioxide does not affect the rate of sintering of MgO but greatly affects both rates of pore growth and densification of ZnO. Oxygen concentration in the atmosphere can especially affect semiconductor oxides but significantly affects the rate of pore growth of SnO2. Impurities like chlorine ions increase the rate of pore growth in MgO due to evaporation of HCl and Mg(OH)Cl, increasing the rate of densification and particle cuboidization. CuO promotes densification in SnO2, and is more effective in dry air. The rate of densification decrease and pore widening are promoted in argon. An inert atmosphere favors SnO2 evaporation due to reduction of CuO. © 1990.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AM1 calculations were performed for the absorption of H2O and CO2 molecules on the surface of model ZnO crystals. The absorption of isolated molecules of each species and the co-absorption of both compounds simultaneously were considered. It was found that the absorption of H2O near a site where CO; is already absorbed favors the process of sintering, in agreement with the experimental findings. This is explained by the formation of Zn(OH)CO3H bound to the surface, a more mobile species than the ZnO unit itself. The roundening of the grains observed in atmospheres containing dry CO2 but suppressed when H2O is present, is also explained by these calculations. After absorption of CO2, the rupture of one bond - so that diffusion of the ZnCO3 species on the surface is allowed - requires much less energy than the breaking of two bonds, necessary for ZnO migration. These facts explain why the speed of surface transport does not decrease in CO2 atmospheres while sintering is indeed slowed down. © 1994.