994 resultados para Route planning
Resumo:
Nanocrystalline strontium hexaferrites SrFe12-2x (Ni2+-Zr4+)(x)O-19] nanoparticles were successfully synthesized by sal gel process. For densification the powders were sintered at 950 degrees C/4 h. The sintered samples were characterized by X-ray diffraction (XRD), surface area measurement, and field emission scanning electron microscope (FESEM). The lattice parameter a is almost constant but c increased with x upto 0.8 and then decreased. The frequency dependent complex permittivity (epsilon and epsilon `' and permeability (mu' and mu `') and magnetic properties such as saturation magnetization (M-s), coercive field (H-c) were studied. If is observed that saturation magnetization increased gradually from 57.82 emuig to 67.2 emufg as x increased from 0.2 to 0.4 and then decreased from 672 emufg to 31.63 ernufg for x=1.0. In present study, x=0.4 shows high value of M-s 67.2 emu/g. The real part of permittivity (epsilon') remains constant upto a frequency 1 GHz and increases further with an increase of frequency, a resonance and anti resonance peak was observed above 1 GHz for all the samples. In real part of permeability (mu') the relaxation frequency is observed above 1 GHz for all the samples and it is attributed to the domain wall motion. It is well known that the permeability for polycrystalline ferrites can be described as the superposition of two different magnetizing mechanisms: spin rotation and domain wall motion. These low coercive strontium hexaferrites are suitable for magnetic recording applications in hard disks, floppy disks, video tapes, etc. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The five-coordinated 16-electron complex Ru(Me)(dppe)(2)]OTf] (3) undergoes methane elimination at room temperature to afford the ortho-metalated species (dppe){(C6H5)(C6H4)PCH2CH2P(C6H5)(2)}Ru]OTf] (7). Methane elimination, monitored using NMR spectroscopy, revealed no intermediate throughout the reaction. The NOE between Ru-Me protons and ortho phenyl protons and an agostic interaction trans to the methyl group were found in complex 3 by NMR spectroscopy, which form the basis for three plausible pathways for methane elimination and ortho metalation: pathway I (through spatial interaction), pathway II (through oxidative addition and reductive elimination), and pathway III (through agostic interaction). Methane elimination from complex 3 via pathway I was discounted, since it involves interactions through space and not through bonds. Moreover, the calculated energy barrier for the pathway I transition state was quite high (71.3 kcal/mol), which also indicates that this pathway is very unlikely. Furthermore, no spectroscopic evidence for oxidatively added seven-coordinated Ru(IV) species was found and the computed energy barrier of the transition state for pathway II was moderately high (41.1 kcal/mol), which suggests that this cannot be the right pathway for methane elimination and ortho-metalation of complex 3. On the other hand, indirect evidence in the form of chemical reactions point to the most plausible pathway for methane elimination, pathway III, via the intermediacy of a sigma-CH4 complex that could not be found spectroscopically. DFT calculations at several levels on this pathway showed an initial low-barrier rearrangement through TS1 to a square-pyramidal intermediate wherein methyl and agostic C-H are cis to each other. Migration of hydrogen from agostic C-H and elimination of methane proceed through the transition state TS2, which retains a weak metal-H bonding through most parts of the reaction coordinate. Upon comparison of all three pathways, pathway III was found to be the most likely for methane elimination and ortho-metalation of complex 3.
Resumo:
Nanocrystalline Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) powder was synthesized via the complex oxalate precursor route at a relatively low temperature (800 degrees C/5 h). The phase formation temperature of BCZT at nanoscale was confirmed by thermogravimetric (TG), differential thermal analysis (DTA) followed by X-ray powder diffraction (XRD) studies. Fourier transform infrared (FTIR) spectroscopy was carried out to confirm the complete decomposition of oxalate precursor into BCZT phase. The XRD and profile fitting revealed the coexistence of cubic and tetragonal phases and was corroborated by Raman study. Transmission electron microscopy (TEM) carried out on 800 degrees C and 1000 degrees C/5 h heat treated BCZT powder revealed the crystallite size to be in the range of 20-50 nm and 40-200 nm respectively. The optical band gap for BCZT nanocrystalline powder was obtained using Kubelka Munk function and was found to be around 3.12 +/- 0.02 eV and 3.03 +/- 0.02 eV respectively for 800 degrees C (20-50 nm) and 1000 degrees C/5 h (40-200 nm) heat treated samples. The piezoelectric properties were studied for two different crystallite sizes (30 and 70 nm) using a piezoresponse force microscope (PFM). The d(33) coefficients obtained for 30 nm and 70 nm sized crystallites were 4 pm V-1 and 47 pm V-1 respectively. These were superior to that of BaTiO3 nanocrystal (approximate to 50 nm) and promising from a technological/industrial applications viewpoint.
Resumo:
A plausible microkinetic model has been proposed for the CO oxidation reaction catalysed by palladium (Pd) with the kinetic parameters obtained from the literature. A robust rate expression using the reaction route analysis has been developed for the presented microkinetic scheme and the obtained rate expressions have been validated against the experimental data presented in the literature. A wide range of experimental conditions ranging from single Pd crystals under ultra-high vacuum conditions and impregnated Pd used for fixed bed experiments under atmospheric pressure has been used to validate the reaction mechanism. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The evolution of microstructure and phase formation in equiatomic Ti20Fe20Ni20Co20Cu20 high entropy alloy synthesised by conventional arc melting followed with suction casting and ball milling with spark plasma sintering route is distinctly different. The cast microstructure exhibits one body centre cubic and two face centre cubic high entropy phases based on titanium, cobalt and copper respectively along with a eutectic containing Ti2Ni type Laves phase. On the contrary, spinodal decomposed microstructure consisting of cobalt and copper solid solution is obtained in the sintered sample. However, long term annealing of cast sample at 950 degrees C reveals a eutectoid transformation with different phases than the cast sample. The aforementioned observations are discussed using CALPHAD thermodynamical approach and available literature.
Resumo:
The crystallization of 28 binary and ternary cocrystals of quercetin with dibasic coformers is analyzed in terms of a combinatorial selection from a solution of preferred molecular conformations and supramolecular synthons. The crystal structures are characterized by distinctive O-H center dot center dot center dot N and O-H center dot center dot center dot O based synthons and are classified as nonporous, porous and helical. Variability in molecular conformation and synthon structure led to an increase in the energetic and structural space around the crystallization event. This space is the crystal structure landscape of the compound and is explored by fine-tuning the experimental conditions of crystallization. In the landscape context, we develop a strategy for the isolation of ternary cocrystals with the use of auxiliary template molecules to reduce the molecular and supramolecular `confusion' that is inherent in a molecule like quercetin. The absence of concomitant polymorphism in this study highlights the selectivity in conformation and synthon choice from the virtual combinatorial library in solution.
Resumo:
MgO:Fe3+ (0.1-5 mol%) nanoparticles (NPs) were synthesized via eco-friendly, inexpensive and simple low temperature solution combustion route using Aloe vera gel as fuel. The final products were characterized by SEM, TEM and HRTEM. PXRD data and Rietveld analysis revealed the formation of cubic system. The influence of Fe3+ ion concentration on the structure morphology, UV absorption, PL emission and photocatalytic activity of MgO:Fe3+ NPs were investigated. The yellow emission with CIE chromaticity coordinates (0.44, 0.52) and average correlated color temperature value was found to be 3540 K which corresponds to warm light of NPs. The control of Fe3+. on MgO matrix influences the photocatalytic decolorization of methylene blue (MB) under UV light. The enhanced photocatalytic activity of MgO:Fe3+ (4 mol%) was attributed to dopant concentration, effective crystallite size, textural properties, decreased band gap and capability for reducing the electron hole pair recombination. Further, the trends of inhibitory effect in the presence of different radical scavengers were explored. These findings open up new avenues for the exploration of Fe-doped MgO in eco-friendly water applications and in the process of display devices. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Nanocrystalline Mn0.4Zn0.6SmxGdyFe2-(x+y)O4 (x = y = 0.01, 0.02, 0.03, 0.04 and 0.05) were synthesized by combustion route. The detailed structural studies were carried out through X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM). The results confirms the formation of mixed spine phase with cubic structure due to the distortion created with co-dopants substitution at Fe site in Mn-Zn ferrite lattice. Further, the crystallite size increases with an increase of Sm3+-Gd3+ ions concentration while lattice parameter and lattice strain decreases. Furthermore, the effect of Sm-Gd co-doping in Mn-Zn ferrite on the room temperature electrical (dielectric studies) studies were carried out in the wide frequency range 1 GHz-5 GHz. The magnetic studies were carried out using vibrating sample magnetometer (VSM) under applied magnetic field of 1.5T and also room temperature electron paramagnetic resonance (EPR) spectra's were recorded. From the results of dielectric studies, it shows that the real and imaginary part of permittivities are increasing with variation of Gd3+ and Sm3+ concentration. The magnetic studies reveal the decrease of remnant, saturation magnetization and coercivity with increasing of Sm3+-Gd3+ ion concentration. The g-value, peak-to-peak line width and spin concentration evaluated from EPR spectra correlated with cations occupancy. The electromagnetic properties clearly indicate that these materials are the good candidates which are useful at L and C band frequency. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The present work deals with the structural and efficient down-shifting (DS) and up-conversion (UC) luminescence properties of erbium ion (Er3+) doped nanocrystalline barium sodium niobate (Ba2Na1-3xErxNb5O15, where x = 0, 0.02, 0.04 and 0.06) powders synthesized via novel citrate-based sol-gel route. The monophasic nature of the title compound was confirmed via x-ray powder diffraction followed by FT-IR studies. High-resolution transmission electron microscopy (HRTEM) facilitated the establishment of the nanocrystalline phase and the morphology of the crystallites. The Kubelka-Munk function, based on diffused reflectance studies and carried out on nano-sized crystallites, was employed to obtain the optical band-gap. The synthesized nanophosphor showed efficient DS/PL-photoluminescence and UC luminescence properties, which have not yet been reported so far in this material. The material emits intense DS green emission on excitation with 378 nm radiation. Interestingly, the material gives intense UC emission in the visible region dominated by green emission and relatively weak red emission on 976 nm excitation (NIR laser excitation). Such a dual-mode emitting nanophosphor could be very useful in display devices and for many other applications.
Resumo:
The problem of continuous curvature path planning for passages is considered. This problem arises when an autonomous vehicle traverses between prescribed boundaries such as corridors, tunnels, channels, etc. Passage boundaries with curvature and heading discontinuities pose challenges for generating smooth paths passing through them. Continuous curvature half-S shaped paths derived from the Four Parameter Logistic Curve family are proposed as a prospective path planning solution. Analytic conditions are derived for generating continuous curvature paths confined within the passage boundaries. Zero end curvature highlights the scalability of the proposed solution and its compatibility with other path planners in terms of larger path planning domains. Various scenarios with curvature and heading discontinuities are considered presenting viability of the proposed solution.
Resumo:
Vulnerability of communities and natural ecosystems, to potential impacts of climate change in developing countries like India, and the need for adaptation are rapidly emerging as central issues in the debate around policy responses to climate change. The present study presents an approach to identify and prioritize the most vulnerable districts, villages and households in Karnataka State, through a multi-scale assessment of inherent vulnerability to current climate variability. It also identifies the drivers of inherent vulnerability, thereby providing a tool for developing and mainstreaming adaptation strategies, in ongoing developmental or dedicated adaptation programmes. The multi-scale assessment was made for all 30 districts at the state level in Karnataka, about 1220 villages in Chikballapur district, and at the household level for two villages - Gundlapalli and Saddapalli - in Bagepalli taluk of Chikballapur district. At the district, village and household levels, low levels of education and skills are the dominant factors contributing to vulnerability. At the village and household level, the lack of income diversification and livelihood support institutions are key drivers of vulnerability. The approach of multi-scale vulnerability assessment facilitates identification and prioritization of the drivers of vulnerability at different scales, to focus adaptation interventions to address these drivers.