925 resultados para Robotics, Automation, Vision systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most visionary goals of Artificial Intelligence is to create a system able to mimic and eventually surpass the intelligence observed in biological systems including, ambitiously, the one observed in humans. The main distinctive strength of humans is their ability to build a deep understanding of the world by learning continuously and drawing from their experiences. This ability, which is found in various degrees in all intelligent biological beings, allows them to adapt and properly react to changes by incrementally expanding and refining their knowledge. Arguably, achieving this ability is one of the main goals of Artificial Intelligence and a cornerstone towards the creation of intelligent artificial agents. Modern Deep Learning approaches allowed researchers and industries to achieve great advancements towards the resolution of many long-standing problems in areas like Computer Vision and Natural Language Processing. However, while this current age of renewed interest in AI allowed for the creation of extremely useful applications, a concerningly limited effort is being directed towards the design of systems able to learn continuously. The biggest problem that hinders an AI system from learning incrementally is the catastrophic forgetting phenomenon. This phenomenon, which was discovered in the 90s, naturally occurs in Deep Learning architectures where classic learning paradigms are applied when learning incrementally from a stream of experiences. This dissertation revolves around the Continual Learning field, a sub-field of Machine Learning research that has recently made a comeback following the renewed interest in Deep Learning approaches. This work will focus on a comprehensive view of continual learning by considering algorithmic, benchmarking, and applicative aspects of this field. This dissertation will also touch on community aspects such as the design and creation of research tools aimed at supporting Continual Learning research, and the theoretical and practical aspects concerning public competitions in this field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing interest for constellation of small, less expensive satellites is bringing space junk and traffic management to the attention of space community. At the same time, the continuous quest for more efficient propulsion systems put the spotlight on electric (low thrust) propulsion as an appealing solution for collision avoidance. Starting with an overview of the current techniques for conjunction assessment and avoidance, we then highlight the possible problems when a low thrust propulsion is used. The need for accurate propagation model shows up from the conducted simulations. Thus, aiming at propagation models with low computational burden, we study the available models from the literature and propose an analytical alternative to improve propagation accuracy. The model is then tested in the particular case of a tangential maneuver. Results show that the proposed solution significantly improve on state of the art methods and is a good candidate to be used in collision avoidance operations. For instance to propagate satellite uncertainty or optimizing avoidance maneuver when conjunction occurs within few (3-4) orbits from measurements time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, one of the most ambitious challenges in soft robotics is the development of actuators capable to achieve performance comparable to skeletal muscles. Scientists have been working for decades, inspired by Nature, to mimic both their complex structure and their perfectly balanced features in terms of linear contraction, force-to-weight ratio, scalability and flexibility. The present Thesis, contextualized within the FET open Horizon 2020 project MAGNIFY, aims to develop a new family of innovative flexible actuators in the field of soft-robotics. For the realization of this actuator, a biomimetic approach has been chosen, drawing inspiration from skeletal muscle. Their hierarchical fibrous structure was mimicked employing the electrospinning technique, while the contraction of sarcomeres was designed employing chains of molecular machines, supramolecular systems capable of performing movements useful to execute specific tasks. The first part deals with the design and production of the basic unit of the artificial muscle, the artificial myofibril, consisting in a novel electrospun core-shell nanofiber, with elastomeric shell and electrically conductive core, coupled with a conductive coating, for the realization of which numerous strategies have been investigated. The second part deals instead with the integration of molecular machines (provided by the project partners) inside these artificial myofibrils, preceded by the study of several model molecules, aimed at simulating the presence of these molecular machines during the initial phases of the project. The last part concerns the realization of an electrospun multiscale hierarchical structure, aimed at reproducing the entire muscle morphology and fibrous organization. These research will be joined together in the near future like the pieces of a puzzle, recreating the artificial actuator most similar to biological muscle ever made, composed of millions of artificial myofibrils, electrically activated in which the nano-scale movement of molecular machines will be incrementally amplified to the macro-scale contraction of the artificial muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, IoT technology has radically transformed many crucial industrial and service sectors such as healthcare. The multi-facets heterogeneity of the devices and the collected information provides important opportunities to develop innovative systems and services. However, the ubiquitous presence of data silos and the poor semantic interoperability in the IoT landscape constitute a significant obstacle in the pursuit of this goal. Moreover, achieving actionable knowledge from the collected data requires IoT information sources to be analysed using appropriate artificial intelligence techniques such as automated reasoning. In this thesis work, Semantic Web technologies have been investigated as an approach to address both the data integration and reasoning aspect in modern IoT systems. In particular, the contributions presented in this thesis are the following: (1) the IoT Fitness Ontology, an OWL ontology that has been developed in order to overcome the issue of data silos and enable semantic interoperability in the IoT fitness domain; (2) a Linked Open Data web portal for collecting and sharing IoT health datasets with the research community; (3) a novel methodology for embedding knowledge in rule-defined IoT smart home scenarios; and (4) a knowledge-based IoT home automation system that supports a seamless integration of heterogeneous devices and data sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes the development of the Sample Fetch Rover (SFR), studied for Mars Sample Return (MSR), an international campaign carried out in cooperation between the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). The focus of this document is the design of the electro-mechanical systems of the rover. After placing this work into the general context of robotic planetary exploration and summarising the state of the art for what concerns Mars rovers, the architecture of the Mars Sample Return Campaign is presented. A complete overview of the current SFR architecture is provided, touching upon all the main subsystems of the spacecraft. For each area, it is discussed what are the design drivers, the chosen solutions and whether they use heritage technology (in particular from the ExoMars Rover) or new developments. This research focuses on two topics of particular interest, due to their relevance for the mission and the novelty of their design: locomotion and sample acquisition, which are discussed in depth. The early SFR locomotion concepts are summarised, covering the initial trade-offs and discarded designs for higher traverse performance. Once a consolidated architecture was reached, the locomotion subsystem was developed further, defining the details of the suspension, actuators, deployment mechanisms and wheels. This technology is presented here in detail, including some key analysis and test results that support the design and demonstrate how it responds to the mission requirements. Another major electro-mechanical system developed as part of this work is the one dedicated to sample tube acquisition. The concept of operations of this machinery was defined to be robust against the unknown conditions that characterise the mission. The design process led to a highly automated robotic system which is described here in its main components: vision system, robotic arm and tube storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research activities have allowed the analysis of the driver assistance systems, called Advanced Driver Assistance Systems (ADAS) in relation to road safety. The study is structured according to several evaluation steps, related to definite on-site tests that have been carried out with different samples of users, according to their driving experience with the ACC. The evaluation steps concern: •The testing mode and the choice of suitable instrumentation to detect the driver’s behaviour in relation to the ACC. •The analysis modes and outputs to be obtained, i.e.: - Distribution of attention and inattention; - Mental workload; - The Perception-Reaction Time (PRT), the Time To Collision (TTC) and the Time Headway (TH). The main purpose is to assess the interaction between vehicle drivers and ADAS, highlighting the inattention and variation of the workloads they induce regarding the driving task. The research project considered the use of a system for monitoring visual behavior (ASL Mobile Eye-XG - ME), a powerful GPS that allowed to record the kinematic data of the vehicle (Racelogic Video V-BOX) and a tool for reading brain activity (Electroencephalographic System - EEG). Just during the analytical phase, a second and important research objective was born: the creation of a graphical interface that would allow exceeding the frame count limit, making faster and more effective the labeling of the driver’s points of view. The results show a complete and exhaustive picture of the vehicle-driver interaction. It has been possible to highlight the main sources of criticalities related to the user and the vehicle, in order to concretely reduce the accident rate. In addition, the use of mathematical-computational methodologies for the analysis of experimental data has allowed the optimization and verification of analytical processes with neural networks that have made an effective comparison between the manual and automatic methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water Distribution Networks (WDNs) play a vital importance rule in communities, ensuring well-being band supporting economic growth and productivity. The need for greater investment requires design choices will impact on the efficiency of management in the coming decades. This thesis proposes an algorithmic approach to address two related problems:(i) identify the fundamental asset of large WDNs in terms of main infrastructure;(ii) sectorize large WDNs into isolated sectors in order to respect the minimum service to be guaranteed to users. Two methodologies have been developed to meet these objectives and subsequently they were integrated to guarantee an overall process which allows to optimize the sectorized configuration of WDN taking into account the needs to integrated in a global vision the two problems (i) and (ii). With regards to the problem (i), the methodology developed introduces the concept of primary network to give an answer with a dual approach, of connecting main nodes of WDN in terms of hydraulic infrastructures (reservoirs, tanks, pumps stations) and identifying hypothetical paths with the minimal energy losses. This primary network thus identified can be used as an initial basis to design the sectors. The sectorization problem (ii) has been faced using optimization techniques by the development of a new dedicated Tabu Search algorithm able to deal with real case studies of WDNs. For this reason, three new large WDNs models have been developed in order to test the capabilities of the algorithm on different and complex real cases. The developed methodology also allows to automatically identify the deficient parts of the primary network and dynamically includes new edges in order to support a sectorized configuration of the WDN. The application of the overall algorithm to the new real case studies and to others from literature has given applicable solutions even in specific complex situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, technological advancements have brought industry and research towards the automation of various processes. Automation brings a reduction in costs and an improvement in product quality. For this reason, companies are pushing research to investigate new technologies. The agriculture industry has always looked towards automating various processes, from product processing to storage. In the last years, the automation of harvest and cultivation phases also has become attractive, pushed by the advancement of autonomous driving. Nevertheless, ADAS systems are not enough. Merging different technologies will be the solution to obtain total automation of agriculture processes. For example, sensors that estimate products' physical and chemical properties can be used to evaluate the maturation level of fruit. Therefore, the fusion of these technologies has a key role in industrial process automation. In this dissertation, ADAS systems and sensors for precision agriculture will be both treated. Several measurement procedures for characterizing commercial 3D LiDARs will be proposed and tested to cope with the growing need for comparison tools. Axial errors and transversal errors have been investigated. Moreover, a measurement method and setup for evaluating the fog effect on 3D LiDARs will be proposed. Each presented measurement procedure has been tested. The obtained results highlight the versatility and the goodness of the proposed approaches. Regarding the precision agriculture sensors, a measurement approach for the Moisture Content and density estimation of crop directly on the field is presented. The approach regards the employment of a Near Infrared spectrometer jointly with Partial Least Square statistical analysis. The approach and the model will be described together with a first laboratory prototype used to evaluate the NIRS approach. Finally, a prototype for on the field analysis is realized and tested. The test results are promising, evidencing that the proposed approach is suitable for Moisture Content and density estimation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spiking Neural Networks (SNNs) are bio-inspired Artificial Neural Networks (ANNs) utilizing discrete spiking signals, akin to neuron communication in the brain, making them ideal for real-time and energy-efficient Cyber-Physical Systems (CPSs). This thesis explores their potential in Structural Health Monitoring (SHM), leveraging low-cost MEMS accelerometers for early damage detection in motorway bridges. The study focuses on Long Short-Term SNNs (LSNNs), although their complex learning processes pose challenges. Comparing LSNNs with other ANN models and training algorithms for SHM, findings indicate LSNNs' effectiveness in damage identification, comparable to ANNs trained using traditional methods. Additionally, an optimized embedded LSNN implementation demonstrates a 54% reduction in execution time, but with longer pre-processing due to spike-based encoding. Furthermore, SNNs are applied in UAV obstacle avoidance, trained directly using a Reinforcement Learning (RL) algorithm with event-based input from a Dynamic Vision Sensor (DVS). Performance evaluation against Convolutional Neural Networks (CNNs) highlights SNNs' superior energy efficiency, showing a 6x decrease in energy consumption. The study also investigates embedded SNN implementations' latency and throughput in real-world deployments, emphasizing their potential for energy-efficient monitoring systems. This research contributes to advancing SHM and UAV obstacle avoidance through SNNs' efficient information processing and decision-making capabilities within CPS domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Massive IoT vision, millions of devices need to be connected to the Internet through a wireless access technology. However, current IoT-focused standards are not fully prepared for this future. In this thesis, a novel approach to Non-Orthogonal techniques for Random Access, which is the main bottleneck in high density systems, is proposed. First, the most popular wireless access standards are presented, with a focus on Narrowband-IoT. Then, the Random Access procedure as implemented in NB-IoT is analyzed. The Non-Orthogonal Random Access technique is presented next, along with two potential algorithms for the detection of non-orthogonal preambles. Finally, the performance of the proposed solutions are obtained through numerical simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper deals with the integration of ROS, in the proprietary environment of the Marchesini Group company, for the control of industrial robotic systems. The basic tools of this open-source software are deeply studied to model a full proprietary Pick and Place manipulator inside it, and to develop custom ROS nodes to calculate trajectories; speaking of which, the URDF format is the standard to represent robots in ROS and the motion planning framework MoveIt offers user-friendly high-level methods. The communication between ROS and the Marchesini control architecture is established using the OPC UA standard; the tasks computed are transmitted offline to the PLC, supervisor controller of the physical robot, because the performances of the protocol don’t allow any kind of active control by ROS. Once the data are completely stored at the Marchesini side, the industrial PC makes the real robot execute a trajectory computed by MoveIt, so that it replicates the behaviour of the simulated manipulator in Rviz. Multiple experiments are performed to evaluate in detail the potential of ROS in the planning of movements for the company proprietary robots. The project ends with a small study regarding the use of ROS as a simulation platform. First, it is necessary to understand how a robotic application of the company can be reproduced in the Gazebo real world simulator. Then, a ROS node extracts information and examines the simulated robot behaviour, through the subscription to specific topics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considering the great development of robotics in industrial automation, the Remodel project aims to reproduce, through the use of Cobots, the wiring activity typical of a human operator and to realize an autonomous storage work. My researches focused on this second topic. In this paper, we will see how to realize a gripper compatible with an Omron TM5X-900, able to perform a pick and place of different types of cables, but also how to compute possible trajectories. In particular, what I needed, was a trajectory going from the Komax, the cables production machine, to a Warehouse taking into account the possible entangles of cables with the robot during its motion. The last part has been dedicated to the synchronization between robot and main machine work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the field of industrial automation, there is an increasing need to use optimal control systems that have low tracking errors and low power and energy consumption. The motors we are dealing with are mainly Permanent Magnet Synchronous Motors (PMSMs), controlled by 3 different types of controllers: a position controller, a speed controller, and a current controller. In this thesis, therefore, we are going to act on the gains of the first two controllers by going to find, through the TwinCAT 3 software, what might be the best set of parameters. To do this, starting with the default parameters recommended by TwinCAT, two main methods were used and then compared: the method of Ziegler and Nichols, which is a tabular method, and advanced tuning, an auto-tuning software method of TwinCAT. Therefore, in order to analyse which set of parameters was the best,several experiments were performed for each case, using the Motion Control Function Blocks. Moreover, some machines, such as large robotic arms, have vibration problems. To analyse them in detail, it was necessary to use the Bode Plot tool, which, through Bode plots, highlights in which frequencies there are resonance and anti-resonance peaks. This tool also makes it easier to figure out which and where to apply filters to improve control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The usage of Optical Character Recognition’s (OCR, systems is a widely spread technology into the world of Computer Vision and Machine Learning. It is a topic that interest many field, for example the automotive, where becomes a specialized task known as License Plate Recognition, useful for many application from the automation of toll road to intelligent payments. However, OCR systems need to be very accurate and generalizable in order to be able to extract the text of license plates under high variable conditions, from the type of camera used for acquisition to light changes. Such variables compromise the quality of digitalized real scenes causing the presence of noise and degradation of various type, which can be minimized with the application of modern approaches for image iper resolution and noise reduction. Oneclass of them is known as Generative Neural Networks, which are very strong ally for the solution of this popular problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development and maintenance of the sealing of the root canal system is the key to the success of root canal treatment. The resin-based adhesive material has the potential to reduce the microleakage of the root canal because of its adhesive properties and penetration into dentinal walls. Moreover, the irrigation protocols may have an influence on the adhesiveness of resin-based sealers to root dentin. The objective of the present study was to evaluate the effect of different irrigant protocols on coronal bacterial microleakage of gutta-percha/AH Plus and Resilon/Real Seal Self-etch systems. One hundred ninety pre-molars were used. The teeth were divided into 18 experimental groups according to the irrigation protocols and filling materials used. The protocols used were: distilled water; sodium hypochlorite (NaOCl)+eDTA; NaOCl+H3PO4; NaOCl+eDTA+chlorhexidine (CHX); NaOCl+H3PO4+CHX; CHX+eDTA; CHX+ H3PO4; CHX+eDTA+CHX and CHX+H3PO4+CHX. Gutta-percha/AH Plus or Resilon/Real Seal Se were used as root-filling materials. The coronal microleakage was evaluated for 90 days against Enterococcus faecalis. Data were statistically analyzed using Kaplan-Meier survival test, Kruskal-Wallis and Mann-Whitney tests. No significant difference was verified in the groups using chlorhexidine or sodium hypochlorite during the chemo-mechanical preparation followed by eDTA or phosphoric acid for smear layer removal. The same results were found for filling materials. However, the statistical analyses revealed that a final flush with 2% chlorhexidine reduced significantly the coronal microleakage. A final flush with 2% chlorhexidine after smear layer removal reduces coronal microleakage of teeth filled with gutta-percha/AH Plus or Resilon/Real Seal SE.