886 resultados para Retinal Neovascularization
Resumo:
PURPOSE To quantitatively evaluate retinal layer thickness changes in acute macular neuroretinopathy (AMN). METHODS AMN areas were identified using near-infrared reflectance (NIR) images. Intraretinal layer segmentation using Heidelberg software was performed. The inbuilt ETDRS -grid was moved onto the AMN lesion and the mean retinal layer thicknesses of the central grid were recorded and compared with the corresponding area of the fellow eye at initial presentation and during follow-up. RESULTS Eleven patients were included (mean age 26±6 years). AMN lesions at baseline had a significantly thinner outer nuclear layer (ONL) (51±21 µm vs 73±17 µm, p=0.002). The other layers, including inner nuclear layer (37±8 µm vs 38±6 µm, p=0.9) and outer plexiform layer (OPL) (45±19 µm vs 33±16 µm, p=0.1) did not show significant differences between the study eyes and fellow eyes. Adjacent to NIR image lesions, areas of OPL thickening were identified (study eye: 50±14 µm vs fellow eye: 39±16 µm, p=0.005) with corresponding thinning of ONL (study eye: 52±16 µm vs fellow eye: 69±16 µm, p=0.002). CONCLUSIONS AMN presents with characteristic quantitative retinal changes and the extent of the lesion may be more extensive than initially presumed from NIR image lesions.
Resumo:
PURPOSE To evaluate macular retinal ganglion cell thickness in patients with neovascular age-related macular degeneration (AMD) and intravitreal anti-vascular endothelial growth factor (VEGF) therapy. DESIGN Retrospective case series with fellow-eye comparison METHODS: Patients with continuous unilateral anti-VEGF treatment for sub- and juxtafoveal neovascular AMD and a minimum follow-up of 24 months were included. The retinal nerve fiber (RNFL) and retinal ganglion cell layer (RGCL) in the macula were segmented using an ETDRS grid. RNFL and RGCL thickness of the outer ring of the ETDRS grid were quantified at baseline and after repeated anti-VEGF injections, and compared to the patients' untreated fellow eye. Furthermore, best-corrected visual acuity (BCVA), age, and retinal pigment epithelium (RPE) atrophy were recorded and correlated with RNFL and RGCL. RESULTS Sixty eight eyes of 34 patients (23 female and 11 male; mean age 76.7 (SD±8.2) with a mean number of 31.5 (SD ±9.8) anti-VEGF injections and a mean follow-up period of 45.3 months (SD±10.5) were included. Whereas the RGCL thickness decreased significantly compared to the non-injected fellow eye (p=0.01) the decrease of the RNFL was not significant. Visual acuity gain was significantly correlated with RGCL thickness (r=0.52, p<0.05) at follow-up and negatively correlated (r=-0.41, p<0.05) with age. Presence of RPE atrophy correlated negatively with the RGCL thickness at follow-up (r= -0.37, p=0.03). CONCLUSION During the course of long term anti-VEGF therapy there is a significant decrease of the RGCL in patients with neovascular AMD to the fellow (untreated) eye.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-04
Resumo:
Three different cone photoreceptor visual pigments in the retina of striped marlin Tetrapturus audax were found with the aid of microspectrophotometry. This provides the first evidence for the basis of colour vision in the Istiophoridae. Furthermore, regional variations in photoreceptor density, type and spatial arrangement indicate differing visual capabilities along different visual axes. (C) 2003 The Fisheries Society of the British Isles.
Resumo:
Purpose: Vascular endothelial growth factor-A (VEGF-A) is crucial to retinal vascular growth, both normal and pathological. VEGF-B, recently characterized, is reported to be expressed in retinal tissues, but the importance of VEGF-B to retinal vascular development remained unknown. The aim of this study was to analyse retinal vascular growth in the Vegfb (-/-) knockout mouse. Methods: Retinal vascular growth was measured in Vegfb (-/-) knockout mice raised under normal conditions, and Vegfb (-/-) knockout mice with an oxygen-induced proliferative retinopathy. Wild type Vegfb (+/+) mice served as controls. Vessels were perfused with ink and retinal flatmounts secondarily labelled with FITC-lectin (BS-1, Griffonia simplicifolia ). Area and diameter of retinal growth and retinal vascular growth were recorded over days 0-20, and capillary density and mean diameter recorded from day 17 pups. Results: A variety of techniques confirmed that Vegfb (+/+) mice expressed VEGF-B and that VEGF-B expression was absent in Vegfb (-/-) mice. Vegfb (-/-) mice raised in room air showed no significant differences from Vegfb (+/+) controls. No differences were found in oxygen-induced retinopathy between Vegfb (-/-) and Vegfb (+/+) pups in either the extent of the initial oxygen-induced ablation, or in the regrowth of retinal vessels or vitreal (neovascular) sprouts; vitreal sprouts are important markers of the abnormal proliferative response, and are maximally expressed on day 17 in this model of oxygen-induced retinopathy. Conclusions: These results indicate that a lack of VEGF-B does not significantly affect development of the retinal vasculature under normal conditions, nor does it appear to affect the proliferative retinal responses seen in oxygen-induced retinopathy.
Resumo:
Elevated extracellular concentrations of the neurotransmitter glutamate are neurotoxic and directly contribute to CNS damage as a result of ischemic pathologies. However, the main contributors to this uncontrolled rise in glutamate are still unconfirmed. It has been reported that the reversal of high-affinity glutamate transporters is a significant contributing factor. Conversely, it has also Peen observed that these transporters continue to take up glutamate, albeit at a reduced saturation concentration, under ischemic conditions. We sought to determine whether glutamate transporters continue to remove glutamate from the extracellular space under ischemic conditions by pharmacologically modulating the activity of high-affinity retinal glutamate transporters during simulated ischemia in vitro. Retinal glutamate transporter activity was significantly reduced under these ischemic conditions. The suppression of retinal glutamate transporter activity, with the protein kinase C inhibitor chelerythrine, significantly reduced ischemic glutamate uptake and enhanced retinal neurodegeneration. These findings imply a limited but protective role for retinal glutamate transporters under certain ischemic conditions, suggesting that pharmacological enhancement of high-affinity glutamate transporter activity may reduce tissue damage and loss of function resulting from toxic extracellular glutamate concentrations. (C) 2004 Wiley-Liss, Inc.
Resumo:
Myopia (short-sightedness) is a visual problem associated with excessive eye growth and vitreous chamber expansion. Within the eye serotonin (5-hydroxytryptamine, 5-HT) appears to have a variety of effects, it alters retinal amacrine cell processing, increases intraocular pressure, constricts ocular blood vessels, and is also mitogenic. This study sought to determine the role of the retinal serotonin system in eye growth regulation. Myopia was produced in 7-day-old chicks using -15 D spectacle lenses (LIM) and form deprivation (FDM). The effect on LIM and FDM of daily intravitreal injections of a combination of 5-HT receptor antagonists (1, 10, 50 mu M), 5-HT2 selective antagonist (Mianserin 0.5, 20 mu M) were assessed. Counts were performed of serotonin and tyrosine hydroxylase positive neurons and the relative density used to account for areal changes due to eye growth. The effect of LIM and lens-induced hyperopia (LIH) on the numbers of 5-HT-containing amacrine cells in the retina were then determined. The combination of the 5-HT receptor antagonists inhibited LIM by approximately half (1 mu M RE: -7.12 +/- 1.0 D, AL: 0.38 +/- 0.06 mm vs. saline RE: -13.19 +/- 0.65 D, AL: 0.64 +/- 0.03 mm. RE: p < 0.01, AL: p < 0.01), whereas FDM was not affected (1 mu M RE: -8.88 +/- 1.10 D). These data suggest that serotonin has a stimulatory role in LIM, although high doses of serotonin were inhibitory (1 mu M RE: -9.30 +/- 1.34 D). 5-HT immunoreactivity was localised to a subset of amacrine cell bodies in the inner nuclear layer of the retina, and to two synaptic strata in the inner plexiform layer. LIM eyes had increased numbers of 5-HT-containing amacrine cells in the central retina (12.5%). Collectively, these results suggest that manipulations to the serotonin system can alter the eye growth process but the role of the transmitter system within this process remains unclear. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Australian lungfish Neoceratodus forsteri may be the closest living relative to the first tetrapods and yet little is known about their retinal ganglion cells. This study reveals that lungfish possess a heterogeneous population of ganglion cells distributed in a horizontal streak across the retinal meridian, which is formed early in development and maintained through to adult stages. The number and complement of both ganglion cells and a population of putative amacrine cells within the ganglion cell layer are examined using retrograde labelling from the optic nerve and transmission electron-microscopic analysis of axons within the optic nerve. At least four types of retinal ganglion cells are present and lie predominantly within a thin ganglion cell layer, although two subpopulations are identified, one within the inner plexiform and the other within the inner nuclear layer. A subpopulation of retinal ganglion cells comprising up to 7% or the total population are significantly larger (> 400 mu m(2)) and are characterized as giant or alpha-like cells. Up to 44% of cells within the retinal ganglion cell layer represent a population of presumed amacrine cells. The optic nerve is heavily fasciculated and the proportion of myelinated axons increases with body length from 17% in subadults to 74% in adults. Spatial resolving power, based on ganglion cell spacing, is low (1.6-1.9 cycles deg(-1), n = 2) and does not significantly increase with growth. This represents the first detailed study of retinal ganglion cells in sarcopterygian fish, and reveals that, despite variation amongst animal groups, trends in ganglion cell density distribution and characteristics of cell types were defined early in vertebrate evolution.
Resumo:
Choroidal osteoma is a rare, benign, ossifying tumour of the choroid of unknown aetiology. In contrast to other types of intraocular ossification, choroidal osteoma is found typically in young healthy females in the second or third decades of life with no history of systemic or ocular disease. Choroidal osteoma is a deep, pale yellow lesion with distinct geographic borders at the juxtapapillary or macular region, with branching 'spider' vessels on the surface of the tumour. These features should help differentiate choroidal osteoma from other types of intraocular tumour and the diagnosis can be confirmed with ultrasonography and computerised tomography. Here we report an initially unilateral case of choroidal osteoma, which decalcified over 20 years but during the same period the fellow eye also developed a choroidal osteoma to become a bilateral case. Despite the benign nature of the tumour, vision may be compromised by gradual atrophy of the overlying retina, serous retinal detachment, accumulation of sub-retinal fluid and sub-retinal haemorrhage associated with choroidal neovascularisation. Frequent examinations are recommended for patients with choroidal osteoma, for early detection of a subretinal neovascular membrane and potential treatment with laser photocoagulation.
Resumo:
The Australian lungfish Neoceratodus forsteri (Dipnoi) is an ancient fish that has a unique phylogenetic relationship among the basal Sarcopterygii. Here we examine the ultrastructure, histochemistry, and distribution of the retinal photoreceptors using a combination of light and electron microscopy in order to determine the characteristics of the photoreceptor layer in this living fossil. Similar proportions of rods (53%) and cones (47%) reveal that N. forsteri optimizes both scotopic and photopic sensitivity according to its visual demands. Scotopic sensitivity is optimized by a tapetum lucidum and extremely large rods (18.62 +/- 2.68 mu m ellipsoid diameter). Photopic sensitivity is optimized with a theoretical spatial resolving power of 3.28 +/- 0.66 cycles degree(-1), which is based on the spacing of at least three different cone types: a red cone containing a red oil droplet, a yellow cone containing a yellow ellipsoidal pigment, and a colorless cone containing multiple clear oil droplets. Topographic analysis reveals a heterogeneous distribution of all photoreceptor types, with peak cone densities predominantly found in temporal retina (6,020 rods MM 2, 4,670 red cones mm(-2), 900 yellow cones mm(-2), and 320 colorless cones mm(-2)), but ontogenetic changes in distribution are revealed. Spatial resolving power and the diameter of all photoreceptor types (except yellow cones) increases linearly with growth. The presence of at least three morphological types of cones provides the potential for color vision, which could play a role in the clearer waters of its freshwater environment.