801 resultados para Renewable energy. Offshore wind power. LCOE
Resumo:
Power systems have been through deep changes in recent years, namely with the operation of competitive electricity markets in the scope and the increasingly intensive use of renewable energy sources and distributed generation. This requires new business models able to cope with the new opportunities that have emerged. Virtual Power Players (VPPs) are a new player type which allows aggregating a diversity of players (Distributed Generation (DG), Storage Agents (SA), Electrical Vehicles, (V2G) and consumers), to facilitate their participation in the electricity markets and to provide a set of new services promoting generation and consumption efficiency, while improving players` benefits. A major task of VPPs is the remuneration of generation and services (maintenance, market operation costs and energy reserves), as well as charging energy consumption. This paper proposes a model to implement fair and strategic remuneration and tariff methodologies, able to allow efficient VPP operation and VPP goals accomplishment in the scope of electricity markets.
Resumo:
As wind power generation undergoes rapid growth, new technical challenges emerge: dynamic stability and power quality. The influence of wind speed disturbances and a pitch control malfunction on the quality of the energy injected into the electric grid is studied for variable-speed wind turbines with different power-electronic converter topologies. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with permanent magnet synchronous generators. The performance of disturbance attenuation and system robustness is ascertained. Simulation results are presented and conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Ensuring sustainable development conditions is presently world widely recognized as a critically important goal. This makes the use of electricity generation technologies based on renewable energy sources very relevant. Developing countries depend on an adequate availability of electrical energy to assure economic progress and are usually characterized by a high increase in electricity consumption. This makes sustainable development a huge challenge but it can also be taken as an opportunity, especially for countries which do not have fossil resources. This paper presents a study concerning the expansion of an already existent wind farm, located in Praia, the capital of Cape Verde Republic. The paper includes results from simulation studies that have been undertaken using PSCAD software and some economic considerations.
Resumo:
Future distribution systems will have to deal with an intensive penetration of distributed energy resources ensuring reliable and secure operation according to the smart grid paradigm. SCADA (Supervisory Control and Data Acquisition) is an essential infrastructure for this evolution. This paper proposes a new conceptual design of an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). This SCADA model is used to support the energy resource management undertaken by a distribution network operator (DNO). Resource management considers all the involved costs, power flows, and electricity prices, allowing the use of network reconfiguration and load curtailment. Locational Marginal Prices (LMP) are evaluated and used in specific situations to apply Demand Response (DR) programs on a global or a local basis. The paper includes a case study using a 114 bus distribution network and load demand based on real data.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Wind resource evaluation in two sites located in Portugal was performed using the mesoscale modelling system Weather Research and Forecasting (WRF) and the wind resource analysis tool commonly used within the wind power industry, the Wind Atlas Analysis and Application Program (WAsP) microscale model. Wind measurement campaigns were conducted in the selected sites, allowing for a comparison between in situ measurements and simulated wind, in terms of flow characteristics and energy yields estimates. Three different methodologies were tested, aiming to provide an overview of the benefits and limitations of these methodologies for wind resource estimation. In the first methodology the mesoscale model acts like “virtual” wind measuring stations, where wind data was computed by WRF for both sites and inserted directly as input in WAsP. In the second approach, the same procedure was followed but here the terrain influences induced by the mesoscale model low resolution terrain data were removed from the simulated wind data. In the third methodology, the simulated wind data is extracted at the top of the planetary boundary layer height for both sites, aiming to assess if the use of geostrophic winds (which, by definition, are not influenced by the local terrain) can bring any improvement in the models performance. The obtained results for the abovementioned methodologies were compared with those resulting from in situ measurements, in terms of mean wind speed, Weibull probability density function parameters and production estimates, considering the installation of one wind turbine in each site. Results showed that the second tested approach is the one that produces values closest to the measured ones, and fairly acceptable deviations were found using this coupling technique in terms of estimated annual production. However, mesoscale output should not be used directly in wind farm sitting projects, mainly due to the mesoscale model terrain data poor resolution. Instead, the use of mesoscale output in microscale models should be seen as a valid alternative to in situ data mainly for preliminary wind resource assessments, although the application of mesoscale and microscale coupling in areas with complex topography should be done with extreme caution.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Smart grids with an intensive penetration of distributed energy resources will play an important role in future power system scenarios. The intermittent nature of renewable energy sources brings new challenges, requiring an efficient management of those sources. Additional storage resources can be beneficially used to address this problem; the massive use of electric vehicles, particularly of vehicle-to-grid (usually referred as gridable vehicles or V2G), becomes a very relevant issue. This paper addresses the impact of Electric Vehicles (EVs) in system operation costs and in power demand curve for a distribution network with large penetration of Distributed Generation (DG) units. An efficient management methodology for EVs charging and discharging is proposed, considering a multi-objective optimization problem. The main goals of the proposed methodology are: to minimize the system operation costs and to minimize the difference between the minimum and maximum system demand (leveling the power demand curve). The proposed methodology perform the day-ahead scheduling of distributed energy resources in a distribution network with high penetration of DG and a large number of electric vehicles. It is used a 32-bus distribution network in the case study section considering different scenarios of EVs penetration to analyze their impact in the network and in the other energy resources management.
Resumo:
Power systems have been through deep changes in recent years, namely due to the operation of competitive electricity markets in the scope the increasingly intensive use of renewable energy sources and distributed generation. This requires new business models able to cope with the new opportunities that have emerged. Virtual Power Players (VPPs) are a new type of player that allows aggregating a diversity of players (Distributed Generation (DG), Storage Agents (SA), Electrical Vehicles (V2G) and consumers) to facilitate their participation in the electricity markets and to provide a set of new services promoting generation and consumption efficiency, while improving players’ benefits. A major task of VPPs is the remuneration of generation and services (maintenance, market operation costs and energy reserves), as well as charging energy consumption. This paper proposes a model to implement fair and strategic remuneration and tariff methodologies, able to allow efficient VPP operation and VPP goals accomplishment in the scope of electricity markets.
Resumo:
The electricity market restructuring, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in an rising complexity in power systems operation. Various power system simulators have been introduced in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex environment. This paper focuses on the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The restructuring of MASCEM (Multi-Agent System for Competitive Electricity Markets), and this system’s integration with MASGriP (Multi-Agent Smart Grid Platform), and ALBidS (Adaptive Learning Strategic Bidding System) provide the means for the exemplification of the usefulness of this ontology. A practical example is presented, showing how common simulation scenarios for different simulators, directed to very distinct environments, can be created departing from the proposed ontology.
Resumo:
Os combustíveis fósseis, como o carvão, o petróleo e o gás, constituem fontes de energia que em breve se esgotarão e que são demasiado caras para serem desperdiçadas pelas centrais elétricas na produção de electricidade. Para além desse facto, existem outros argumentos (sobretudo económicos) que inviabilizam a utilização destas fontes de energia em algumas regiões, abrindo caminho a fontes de energia alternativas (e.g. solar, eólica, biomassa, mini-hídricas, geotérmicas, etc) e preferencialmente com contornos locais. No caso particular de Moçambique, tem-se verificado um interesse crescente por parte do governo e de várias ONGs na promoção do uso de energias alternativas para as zonas onde a energia convencional não chega e não chegará, devido aos custos muito elevados que esse processo acarretaria. Esta dissertação apresenta um estudo aprofundado do dimensionamento dum sistema híbrido de geração de energia elétrica envolvendo gerador FV e grupo eletrogéneo de emergência para a Escola Rural da Nangade, situada no Distrito de Nangade, na Província do Cabo Delgado. São também descritos os diversos componentes e as tecnologias associadas a um sistema deste género, com a inclusão de sistemas inteligentes de controlo de energia com a utilização de inversores bidireccionais (inversores de bateria e carregadores) para sistemas isolados. Os resultados são apresentados de forma a facilitar a aplicação e montagem deste tipo de sistemas in loco. Espera-se que esta dissertação possa servir de base no futuro próximo, para a implementação deste tipo de sistemas para permitir a melhoria da qualidade de ensino através de melhores infraestruturas, democratizando desta forma o acesso à educação para as crianças das zonas rurais das várias províncias de Moçambique. Como as energias renováveis são parte integrante do Sistema Elétrico Nacional, apresenta-se resumidamente, no anexo 17, o “Plano de Desenvolvimento na Área de Energia de Moçambique”.
Resumo:
Actualmente a humanidade depara-se com um dos grandes desafios que é o de efectivar a transição para um futuro sustentável. Logo, o sector da energia tem um papel chave neste processo de transição, com principal destaque para a energia solar, tendo em conta que é uma das fontes de energias renováveis mais promissoras, podendo no médiolongo prazo, tornar-se uma das principais fontes de energia no panorama energético dos países. A energia solar térmica de concentração (CSP), apesar não ser ainda conhecida em Portugal, possui um potencial relevante em regiões específicas do nosso território. Logo, o objectivo deste trabalho é efectuar uma análise detalhada dos sistemas solares de concentração para produção de energia eléctrica, abordando temas, tais como, o potencial da energia solar, a definição do processo de concentração solar, a descrição das tecnologias existentes, o estado da arte do CSP, mercado CSP no mundo, e por último, a análise da viabilidade técnico-económica da instalação de uma central tipo torre solar de 20 MW, em Portugal. Para que este objectivo fosse exequível, recorreu-se à utilização de um software de simulação termodinâmica de centrais CSP, denominado por Solar Advisor Model (SAM). O caso prático foi desenvolvido para a cidade de Faro, onde foram simuladas quatro configurações distintas para uma central do tipo torre solar de 20 MW. Foram apresentados resultados, focando a desempenho diário e anual da central. Foi efectuada uma análise para avaliação da influência da variabilidade dos parâmetros, localização geográfica, múltiplo solar, capacidade de armazenamento de calor e fracção de hibridização sobre o custo nivelado da energia (LCOE), o factor de capacidade e a produção anual de energia. Conjuntamente, é apresentada uma análise de sensibilidade, com a finalidade de averiguar quais os parâmetros que influenciam de forma mais predominante o valor do LCOE. Por último, é apresentada uma análise de viabilidade económica de um investimento deste tipo.
Resumo:
Throughout recent years, there has been an increase in the population size, as well as a fast economic growth, which has led to an increase of the energy demand that comes mainly from fossil fuels. In order to reduce the ecological footprint, governments have implemented sustainable measures and it is expected that by 2035 the energy produced from renewable energy sources, such as wind and solar would be responsible for one-third of the energy produced globally. However, since the energy produced from renewable sources is governed by the availability of the respective primary energy source there is often a mismatch between production and demand, which could be solved by adding flexibility on the demand side through demand response (DR). DR programs influence the end-user electricity usage by changing its cost along the time. Under this scenario the user needs to estimate the energy demand and on-site production in advance to plan its energy demand according to the energy price. This work focuses on the development of an agent-based electrical simulator, capable of: (a) estimating the energy demand and on-site generation with a 1-min time resolution for a 24-h period, (b) calculating the energy price for a given scenario, (c) making suggestions on how to maximize the usage of renewable energy produced on-site and to lower the electricity costs by rescheduling the use of certain appliances. The results show that this simulator allows reducing the energy bill by 11% and almost doubling the use of renewable energy produced on-site.
Resumo:
The recent proposals presented by EPA aimed to reduce the dependency of fossil fuels and to lower current emissions levels, hoping to gradually shift electric generation units to renewable energy sources. Actually, the Final Rule Proposal announcement day exhibited a negative Abnormal Return on Fossil Fuels but the following days had positive Abnormal Returns, mostly due to legislative change perceived by financial markets which eased up implementation periods of the proposed measures in the Final Rule when compared to the Draft Rule. Oppositely, Renewables and Solar Portfolios exhibited negative Cumulative Abnormal Returns over the period surrounding the Final Rule.