930 resultados para Refrigeration and refrigerating machinery.
Resumo:
In this paper the dependence of the power consumption of pneumatic conveyors upon conveyed materials, pipeline route and bore, and mode of flow has been examined. The findings are that, with different materials and modes of flow, not only is the amount of power consumed very different but it varies in different ways with pipe bore and routing. Additionally it has been found that, for any given conveying system, the choice of air mover also has a strong influence on the power requirement.
Resumo:
While protein tyrosine kinases (PTKs) have been extensively characterized in eukaryotes, far less is known about their emerging counterparts in prokaryotes. Studies of close to 20 homologs of bacterial protein tyrosine (BY) kinases have inaugurated a blooming new field of research, all since just the end of the last decade. These kinases are key regulators in the polymerization and exportation of the virulence-determining polysaccharides which shield the bacterial from the non-specific defenses of the host. This research is aimed at furthering our understanding of the BY kinases through the use of X-ray crystallography and various in vitro and in vivo experiments. We reported the first crystal structure of a bacterial PTK, the C-terminal kinase domain of E. coli tyrosine kinase (Etk) at 2.5Å resolution. The fold of the Etk kinase domain differs markedly from that of eukaryotic PTKs. Based on the observed structure and supporting evidences, we proposed a unique activation mechanism for BY kinases in Gram-negative bacteria. The phosphorylation of tyrosine residue Y574 at the active site and the specific interaction of P-Y574 with a previously unidentified key arginine residue, R614, unblock the Etk active site and activate the kinase. Both in vitro kinase activity and in vivo antibiotics resistance studies utilizing structure-guided mutants further support the novel activation mechanism. In addition, the level of phosphorylation of their C-terminal Tyr cluster is known to regulate the translocation of extracellular polysaccharides. Our studies have significantly clarified our understanding of how the phosphorylation status on the C-terminal tyrosine cluster of BY kinases affects the oligomerization state of the protein, which is likely the machinery of polysaccharide export regulation. In summary, this research makes a substantial contribution to the rapidly progressing research of bacterial tyrosine kinases.
Resumo:
The performance of an air-cycle refrigeration unit for road transport, which had been previously reported, was analysed in detail and compared with the original design model and an equivalent Thermo King SL200 vapour-cycle refrigeration unit. Poor heat exchanger performance was found to be the major contributor to low coefficient of performance values. Using state-of-the-art, but achievable performance levels for turbomachinery and heat exchangers, the performance of an optimised air-cycle refrigeration unit for the same application was predicted. The power requirement of the optimised air-cycle unit was 7% greater than the equivalent vapour-cycle unit at full-load operation. However, at part-load operation the air-cycle unit was estimated to absorb 35% less power than the vapour-cycle unit. The analysis demonstrated that the air-cycle system could potentially match the overall fuel consumption of the vapour-cycle transport refrigeration unit, while delivering the benefit of a completely refrigerant free system.
Resumo:
The exact functions of BRCA1 have not been fully described but it now seems apparent that it has roles in DNA damage repair, transcriptional regulation, cell cycle control and most recently in ubiquitylation. These functions of BRCA1 are most likely interdependent but this review will focus on the role of BRCA1 in relation to transcriptional regulation and in particular how this impacts upon cell cycle control. We will (i) describe the structure of BRCA1 and how it may contribute to its transcription function; (ii) describe the interaction of BRCA1 with the core transcriptional machinery (RNA polII); (iii) describe how BRCA1 may regulate transcription at an epigenetic level through chromatin modification; (iv) discuss the role of BRCA1 in modulating transcription through its association with sequence-specific transcription factors. Finally, we will discuss the possible effects of BRCA1 transcriptional regulation on downstream targets with known roles in cell cycle control.
Resumo:
Using matched employer-employee data from the German LIAB for 2001, the authors found that German works councils are in general associated with higher earnings, even after accounting for establishment- and worker heterogeneity. Works Council wage premia exceed those of collective bargaining and are higher, in fact, where both institutions are present in the workplace. The authors also found evidence indicating that works councils benefit women relative to men and appear to favor foreign, east-German, and service-sector workers as well. Separate evidence from quantile regressions suggests that the conjunction of works council presence and collective bargaining is important to the narrowing process. In smaller plants even the presence of a works council markup depends on the coexistence of the works council entity With the machinery of collective bargaining.
Resumo:
Purpose – The purpose of this paper is to identify, clarify and tabulate the various managerial issues encountered, to aid in the management of the complex health and safety concerns which occur within a confined construction site environment.
Design/methodology/approach – This is achieved through conducting extensive qualitative and qualitative research in the form of case studies, interviews and questionnaire survey.
Findings – The leading managerial issues in the management of health and safety on a confined construction site are found to be: “Difficulty to move materials around site safely”; “Lack of adequate room for the effective handling of materials”; “Difficulty in ensuring site is tidy and all plant and materials are stored safely”; “Close proximity of individuals to operation of large plant and machinery; and joint fifth “Difficulty in ensuring proper arrangement and collection of waste materials on-site” along with “Difficulty in controlling hazardous materials and equipment on site”.
Practical implications – The resulting implication for practice of these results can be summarised by identifying that with sustained development of urban centres on a global scale, coupled with the increasing complexity of architectural designs, the majority of on-site project management professionals are faced with the onerous task of completing often intricate designs within a limited spatial environment, under strict health and safety parameters.
Originality/value – The subsequent value of the findings are such that just as on-site management professionals successfully identify the various managerial issues highlighted, the successful management of health and safety on a confined construction site is attainable.
Resumo:
Cystic fibrosis is the most common inherited lethal disease in Caucasians. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), of which the cftr ?F508 mutation is the most common. ?F508 macrophages are intrinsically defective in autophagy because of the sequestration of essential autophagy molecules within unprocessed CFTR aggregates. Defective autophagy allows Burkholderia cenocepacia (B. cepacia) to survive and replicate in ?F508 macrophages. Infection by B. cepacia poses a great risk to cystic fibrosis patients because it causes accelerated lung inflammation and, in some cases, a lethal necrotizing pneumonia. Autophagy is a cell survival mechanism whereby an autophagosome engulfs non-functional organelles and delivers them to the lysosome for degradation. The ubiquitin binding adaptor protein SQSTM1/p62 is required for the delivery of several ubiquitinated cargos to the autophagosome. In WT macrophages, p62 depletion and overexpression lead to increased and decreased bacterial intracellular survival, respectively. In contrast, depletion of p62 in ?F508 macrophages results in decreased bacterial survival, whereas overexpression of p62 leads to increased B. cepacia intracellular growth. Interestingly, the depletion of p62 from ?F508 macrophages results in the release of the autophagy molecule beclin1 (BECN1) from the mutant CFTR aggregates and allows its redistribution and recruitment to the B. cepacia vacuole, mediating the acquisition of the autophagy marker LC3 and bacterial clearance via autophagy. These data demonstrate that p62 differentially dictates the fate of B. cepacia infection in WT and ?F508 macrophages.
Resumo:
Signal initiation by engagement of the TCR triggers actin rearrangements, receptor clustering, and dynamic organization of signaling complexes to elicit and sustain downstream signaling. Nef, a pathogenicity factor of HIV, disrupts early TCR signaling in target T cells. To define the mechanism underlying this Nef-mediated signal disruption, we employed quantitative single-cell microscopy following surface-mediated TCR stimulation that allows for dynamic visualization of distinct signaling complexes as microclusters (MCs). Despite marked inhibition of actin remodeling and cell spreading, the induction of MCs containing TCR-CD3 or ZAP70 was not affected significantly by Nef. However, Nef potently inhibited the subsequent formation of MCs positive for the signaling adaptor Src homology-2 domain-containing leukocyte protein of 76 kDa (SLP-76) to reduce MC density in Nef-expressing and HIV-1-infected T cells. Further analyses suggested that Nef prevents formation of SLP-76 MCs at the level of the upstream adaptor protein, linker of activated T cells (LAT), that couples ZAP70 to SLP-76. Nef did not disrupt pre-existing MCs positive for LAT. However, the presence of the viral protein prevented de novo recruitment of active LAT into MCs due to retargeting of LAT to an intracellular compartment. These modulations in MC formation and composition depended on Nef's ability to simultaneously disrupt both actin remodeling and subcellular localization of TCR-proximal machinery. Nef thus employs a dual mechanism to disturb early TCR signaling by limiting the communication between LAT and SLP-76 and preventing the dynamic formation of SLP-76-signaling MCs.
Resumo:
Execution of programmed cell death (PCD) in nonmetazoan organisms is morphologically different from apoptotic PCD in animals and lacks a number of key molecular components of apoptotic machinery, including caspases. Yet protozoan, fungal, and plant cells exhibit caspase-like proteolytic activities, which increase in a PCD-dependent manner. This poses a question whether nonmetazoan organisms contain structurally dissimilar proteases that functionally substitute for caspases. Putative ancestors of caspases, metacaspases, are candidates for this role; however, their distinct substrate specificity raises doubts. The identification of a common biological target of caspases and metacaspases and previously unknown functions unrelated to cell death of metacaspases provide new food for thought.
Resumo:
This paper will examine some of the ways in which processes of denomination
have shaped Northern Irish politics before and after the ‘Belfast’, or ‘Good Friday
Agreement’ of 1998. We concentrate on the formation of the ‘Unionist’ or ‘Loyalist
community’, principally because the flag protests of 2012-2013 have brought the
issue of this community identity to the fore again. The flag is part of a whole
machinery of what we, in this paper, will call ‘denomination’ in Northern Irish
politics and elsewhere. The religious overtones of the term are neither accidental
nor incidental. Acts of denomination posit (assertively, authoritatively) a
collective identity, conceived and constituted ontologically, as an existent entity,
and stake a claim to a whole territory.
Resumo:
Mutations within BRCA1 predispose carriers to a high risk of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through the assembly of multiple protein complexes involved in DNA repair, cell-cycle arrest, and transcriptional regulation. Here, we report the identification of a DNA damage-induced BRCA1 protein complex containing BCLAF1 and other key components of the mRNA-splicing machinery. In response to DNA damage, this complex regulates pre-mRNA splicing of a number of genes involved in DNA damage signaling and repair, thereby promoting the stability of these transcripts/proteins. Further, we show that abrogation of this complex results in sensitivity to DNA damage, defective DNA repair, and genomic instability. Interestingly, mutations in a number of proteins found within this complex have been identified in numerous cancer types. These data suggest that regulation of splicing by the BRCA1-mRNA splicing complex plays an important role in the cellular response to DNA damage.
Resumo:
BACKGROUND: We proposed to exploit hypoxia-inducible factor (HIF)-1alpha overexpression in prostate tumours and use this transcriptional machinery to control the expression of the suicide gene cytosine deaminase (CD) through binding of HIF-1alpha to arrangements of hypoxia response elements. CD is a prodrug activation enzyme, which converts inactive 5-fluorocytosine to active 5-fluorouracil (5-FU), allowing selective killing of vector containing cells.
METHODS: We developed a pair of vectors, containing either five or eight copies of the hypoxia response element (HRE) isolated from the vascular endothelial growth factor (pH5VCD) or glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (pH8GCD) gene, respectively. The kinetics of the hypoxic induction of the vectors and sensitization effects were evaluated in 22Rv1 and DU145 cells in vitro.
RESULTS: The CD protein as selectively detected in lysates of transiently transfected 22Rv1 and DU145 cells following hypoxic exposure. This is the first evidence of GAPDH HREs being used to control a suicide gene therapy strategy. Detectable CD levels were sustained upon reoxygenation and prolonged hypoxic exposures. Hypoxia-induced chemoresistance to 5-FU was overcome in both cell lines treated with this suicide gene therapy approach. Hypoxic transfectants were sensitized to prodrug concentrations that were ten-fold lower than those that are clinically relevant. Moreover, the surviving fraction of reoxygenated transfectants could be further reduced with the concomitant delivery of clinically relevant single radiation doses.
CONCLUSIONS: This strategy thus has the potential to sensitize the hypoxic compartment of prostate tumours and improve the outcome of current therapies.
Resumo:
Adaptor protein (AP) complexes bind to transmembrane proteins destined for internalization and to membrane lipids, so linking cargo to the accessory internalization machinery. This machinery interacts with the appendage domains of APs, which have platform and beta-sandwich subdomains, forming the binding surfaces for interacting proteins. Proteins that interact with the subdomains do so via short motifs, usually found in regions of low structural complexity of the interacting proteins. So far, up to four motifs have been identified that bind to and partially compete for at least two sites on each of the appendage domains of the AP2 complex. Motifs in individual accessory proteins, their sequential arrangement into motif domains, and partial competition for binding sites on the appendage domains coordinate the formation of endocytic complexes in a temporal and spatial manner. In this work, we examine the dominant interaction sequence in amphiphysin, a synapse-enriched accessory protein, which generates membrane curvature and recruits the scission protein dynamin to the necks of coated pits, for the platform subdomain of the alpha-appendage. The motif domain of amphiphysin1 contains one copy of each of a DX(F/W) and FXDXF motif. We find that the FXDXF motif is the main determinant for the high affinity interaction with the alpha-adaptin appendage. We describe the optimal sequence of the FXDXF motif using thermodynamic and structural data and show how sequence variation controls the affinities of these motifs for the alpha-appendage.