950 resultados para Reflection high energy electron diffraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kaon electroproduction reaction H(e, e ′K+)Λ was studied as a function of the four momentum transfer, Q2, for different values of the virtual photon polarization parameter. Electrons and kaons were detected in coincidence in two High Resolution Spectrometers (HRS) at Jefferson Lab. Data were taken at electron beam energies ranging from 3.4006 to 5.7544 GeV. The kaons were identified using combined time of flight information and two Aerogel Čerenkov detectors used for particle identification. For different values of Q2 ranging from 1.90 to 2.35 GeV/c2 the center of mass cross sections for the Λ hyperon were determined for 20 kinematics and the longitudinal, σ L, and transverse, σT, terms were separated using the Rosenbluth separation technique. ^ Comparisons between available models and data have been studied. The comparison supports the t-channel dominance behavior for kaon electroproduction. All models seem to underpredict the transverse cross section. An estimate of the kaon form factor has been explored by determining the sensitivity of the separated cross sections to variations of the kaon EM form factor. From comparison between models and data we can conclude that interpreting the data using the Regge model is quite sensitive to a particular choice for the EM form factors. The data from the E98-108 experiment extends the range of the available kaon electroproduction cross section data to an unexplored region of Q2 where no separations have ever been performed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have obtained total and differential cross sections for the strangeness changing charged current weak reaction ν L + p → Λ(Σ0) + L+ using standard dipole form factors, where L stands for an electron, muon, or tau lepton, and L + stands for an positron, anti-muon or anti-tau lepton. We calculated these reactions from near threshold few hundred MeV to 8 GeV of incoming neutrino energy and obtained the contributions of the various form factors to the total and differential cross sections. We did this in support of possible experiments which might be carried out by the MINERνA collaboration at Fermilab. The calculation is phenomenologically based and makes use of SU(3) relations to obtain the standard vector current form factors and data from Λ beta decay to obtain the axial current form factor. We also made estimates for the contributions of the pseudoscalar form factor and for the F E and FS form factors to the total and differential cross sections. We discuss our results and consider under what circumstances we might extract the various form factors. In particular we wish to test the SU(3) assumptions made in determining all the form factors over a range of q2 values. Recently new form factors were obtained from recoil proton measurements in electron-proton electromagnetic scattering at Jefferson Lab. We thus calculated the contributions of the individual form factors to the total and differential cross sections for this new set of form factors. We found that the differential and total cross sections for Λ production change only slightly between the two sets of form factors but that the differential and total cross sections change substantially for Σ 0 production. We discuss the possibility of distinguishing between the two cases for the experiments planned by the MINERνA Collaboration. We also undertook the calculation for the inverse reaction e − + p → Λ + νe for a polarized outgoing Λ which might be performed at Jefferson Lab, and provided additional analysis of the contributions of the individual form factors to the differential cross sections for this case. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The E01-011 experiment at Jefferson Laboratory (JLab) studied light-to-medium mass Λ hypernuclei via the AZ + e → [special characters omitted] + e' + K+ electroproduction reaction. Precise measurement of hypernuclear ground state masses and excitation energies provides information about the nature of hyperon-nucleon interactions. Until recently, hypernuclei were studied at accelerator facilities with intense π+ and K- meson beams. The poor quality of these beams limited the resolution of the hypernuclear excitation energy spectra to about 1.5 MeV (FWHM). This resolution is not sufficient for resolving the rich structure observed in the excitation spectra. By using a high quality electron beam and employing a new high resolution spectrometer system, this study aims to improve the resolution to a few hundred keV with an absolute precision of about 100 keV for excitation energies. In this work the high-resolution excitation spectra of [special characters omitted], and [special characters omitted] hypernuclei are presented. In an attempt to emphasize the presence of the core-excited states we introduced a novel likelihood approach to particle identification (PID) to serve as an alternative to the commonly used standard hard-cut PID. The new method resulted in almost identical missing mass spectra as obtained by the standard approach. An energy resolution of approximately 400–500 keV (FWHM) has been achieved, an unprecedented value in hypernuclear reaction spectroscopy. For [special characters omitted] the core-excited configuration has been clearly observed with significant statistics. The embedded Λ hyperon increases the excitation energies of the 11B nuclear core by 0.5–1 MeV. The [special characters omitted] spectrum has been observed with significant statistics for the first time. The ground state is bound deeper by roughly 400 keV than currently predicted by theory. Indication for the core-excited doublet, which is unbound in the core itself, is observed. The measurement of [special characters omitted] provides the first study of a d-shell hypernucleus with sub-MeV resolution. Discrepancies of up to 2 MeV between measured and theoretically predicted binding energies are found. Similar disagreement exists when comparing to the [special characters omitted] mirror hypernucleus. Also the core-excited structure observed between the major s-, p- and d-shell Λ orbits is not consistent with the available theoretical calculations. In conclusion, the discrepancies found in this study will provide valuable input for the further development of theoretical models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation presents a study of the D( e, e′p)n reaction carried out at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) for a set of fixed values of four-momentum transfer Q 2 = 2.1 and 0.8 (GeV/c)2 and for missing momenta pm ranging from pm = 0.03 to pm = 0.65 GeV/c. The analysis resulted in the determination of absolute D(e,e′ p)n cross sections as a function of the recoiling neutron momentum and it's scattering angle with respect to the momentum transfer [vector] q. The angular distribution was compared to various modern theoretical predictions that also included final state interactions. The data confirmed the theoretical prediction of a strong anisotropy of final state interaction contributions at Q2 of 2.1 (GeV/c)2 while at the lower Q2 value, the anisotropy was much less pronounced. At Q2 of 0.8 (GeV/c)2, theories show a large disagreement with the experimental results. The experimental momentum distribution of the bound proton inside the deuteron has been determined for the first time at a set of fixed neutron recoil angles. The momentum distribution is directly related to the ground state wave function of the deuteron in momentum space. The high momentum part of this wave function plays a crucial role in understanding the short-range part of the nucleon-nucleon force. At Q2 = 2.1 (GeV/c)2, the momentum distribution determined at small neutron recoil angles is much less affected by FSI compared to a recoil angle of 75°. In contrast, at Q2 = 0.8 (GeV/c)2 there seems to be no region with reduced FSI for larger missing momenta. Besides the statistical errors, systematic errors of about 5–6 % were included in the final results in order to account for normalization uncertainties and uncertainties in the determi- nation of kinematic veriables. The measurements were carried out using an electron beam energy of 2.8 and 4.7 GeV with beam currents between 10 to 100 &mgr; A. The scattered electrons and the ejected protons originated from a 15cm long liquid deuterium target, and were detected in conicidence with the two high resolution spectrometers of Hall A at Jefferson Lab.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, composites were prepared using high energy mechanical milling from the precursors hydroxyapatite - HAp (Ca10(PO4)6(OH)2) and metallic iron ( -Fe ). The main goal here is to study composites in order to employ them in magnetic hyperthermia for cancer therapy. The produced samples were characterized by X-ray di raction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), magnetization curves as a function of applied eld (MxH), and nally measurements of magnetic hyperthermia. The XRD patterns of the milled samples HAp/Fe revealed only the presence of precursor materials. The SEM showed clusters with irregular shapes. The magnetization curves indicated typical cases of weak ferromagnetic behavior. For samples submitted to grinding and annealing, the identi ed phases were: HAp (Ca10(PO4)6(OH)2), hematite (Fe2O3) and Calcium Iron Phosphate (Ca9Fe(PO4)7). Analyzing the results of MxH, there was a reduction of the saturation magnetization, given that the Fe was incorporated into HAp. Hysteresis curves obtained at 300 K are characteristics of samples possessing over a phase. At 77 K, the behavior of the hysteresis curve is in uenced by the presence of hematite, which is antiferromagnetic. Already at T = 4.2 K, it is observed a weak ferromagnetic behavior. Furthermore, there is the e ect of exchange bias. Regarding the magnetic hyperthermia, the results of temperature measurements as a function of the alternating eld are promising for applications in magnetic hyperthermia and other biomedical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is part of research on new materials for catalysis and gas sensors more active, sensitive, selective. The aim of this thesis was to develop and characterize cobalt ferrite in different morphologies, in order to study their influence on the electrical response and the catalytic activity, and to hierarchize these grains for greater diffusivity of gas in the material. The powders were produced via hydrothermal and solvothermal, and were characterized by thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy (electron diffraction, highresolution simulations), and energy dispersive spectroscopy. The catalytic and electrical properties were tested in the presence of CO and NO2 gases, the latter in different concentrations (1-100 ppm) and at different temperatures (room temperature to 350 ° C). Nanooctahedra with an average size of 20 nm were obtained by hydrothermal route. It has been determined that the shape of the grains is mainly linked to the nature of the precipitating agent and the presence of OH ions in the reaction medium. By solvothermal method CoFe2O4 spherical powders were prepared with grain size of 8 and 20 nm. CoFe2O4 powders exhibit a strong response to small amounts of NO2 (10 ppm to 200 ° C). The nanooctahedra have greater sensitivity than the spherical grains of the same size, and have smaller response time and shorter recovery times. These results were confirmed by modeling the kinetics of response and recovery of the sensor. Initial tests of catalytic activity in the oxidation of CO between temperatures of 100 °C and 350 °C show that the size effect is predominant in relation the effect of the form with respect to the conversion of the reaction. The morphology of the grains influence the rate of reaction. A higher reaction rate is obtained in the presence of nanooctahedra. In order to improve the detection and catalytic properties of the material, we have developed a methodology for hierarchizing grains which involves the use of carbonbased templates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Nb-Cu pseudoalloys present themselves as potential substitutes for the alloys from a well known system and already commercially applied, as the W-Cu alloys, used in applications such as heat sinks, electrical contacts and coils for the generation of high magnetic fields. Because it is an immiscible system, where there is mutual insolubility and low wettability of the liquid Cu on the Nb surface, the processing route used in this work was the Powder Metallurgy. Two Nb alloys were used, with additions of 10% and 20% in weight of Cu, and times of 20, 30 and 40 hours for the high energy milling of the starting powders. The milling evolution of the powders is presented through the characterization techniques, such as the LASER diffraction for particle size, XRD, SEM, EDS, DSC, dilatometry, TEM and chemical analysis. After the milling, portions of the loads were submitted to the annealing heat treatment. The process used for the samples consolidation was the hot pressing, which has been applied both on some milled powders samples, as on the annealed powders. Subsequent heat treatments were performed in the samples at temperatures of 1000ºC (solid phase) and 1100ºC (in the Cu liquid phase). All sets of consolidated samples, and also the two sets of the heat treated, were analyzed by XRD, SEM, EDS, density and Vickers microhardness. Moreover, other Nb powder samples with 10% and 20% in weight of Cu obtained by simple mechanical mixing, were consolidated, thermally treated and characterized with the same techniques applied to the others, and the results were compared among themselves. Despite the difficulty of consolidation and densification of the two pseudoalloys of the Nb-Cu system of this study, on the route that passes through the HEM, samples were obtained with densities around 90% of the theoretical density. And, on the processing route of which were only mixed, the values reached up to 97%. Therefore, in this work are also emphasized the processes that made possible these results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a theoretical description of the generation of ultra-short, high-energy pulses in two laser cavities driven by periodic spectral filtering or dispersion management. Critical in driving the intra-cavity dynamics is the nontrivial phase profiles generated and their periodic modification from either spectral filtering or dispersion management. For laser cavities with a spectral filter, the theory gives a simple geometrical description of the intra-cavity dynamics and provides a simple and efficient method for optimizing the laser cavity performance. In the dispersion managed cavity, analysis shows the generated self-similar behavior to be governed by the porous media equation with a rapidly-varying, mean-zero diffusion coefficient whose solution is the well-known Barenblatt similarity solution with parabolic profile. © 2010 Copyright SPIE - The International Society for Optical Engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a theoretical description of the generation of ultra-short, high-energy pulses in two laser cavities driven by periodic spectral filtering or dispersion management. Critical in driving the intra-cavity dynamics is the nontrivial phase profiles generated and their periodic modification from either spectral filtering or dispersion management. For laser cavities with a spectral filter, the theory gives a simple geometrical description of the intra-cavity dynamics and provides a simple and efficient method for optimizing the laser cavity performance. In the dispersion managed cavity, analysis shows the generated self-similar behavior to be governed by the porous media equation with a rapidly-varying, mean-zero diffusion coefficient whose solution is the well-known Barenblatt similarity solution with parabolic profile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Layered metal oxides provide a single-step route to sheathed superlattices of atomic layers of a variety of inorganic materials, where the interlayer spacing and overall layered structure forms the most critical feature in the nanomaterials’ growth and application in electronics, health, and energy storage. We use a combination of computer simulations and experiments to describe the atomic-scale structure, dynamics and energetics of alkanethiol-intercalated layered vanadium oxide-based nanostructures. Molecular dynamics (MD) simulations identify the unusual substrate-constrained packing of the alkanethiol surfactant chains along each V2O5 (010) face that combines with extensive interdigitation between chains on opposing faces to maximize three-dimensional packing in the interlayer regions. The findings are supported by high resolution electron microscopy analyses of synthesized alkanethiol-intercalated vanadium oxide nanostructures, and the preference for this new interdigitated model is clarified using a large set of MD simulations. This dependency stresses the importance of organic–inorganic interactions in layered material systems, the control of which is central to technological applications of flexible hybrid nanomaterials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extremely broad emission wings at Hβ and Hα have been found in VLT-FLAMES Tarantula Survey data for five very luminous BA supergiants in or near 30 Doradus in the Large Magellanic Cloud. The profiles of both lines are extremely asymmetrical, which we have found to be caused by very broad diffuse interstellar bands (DIBs) in the longward wing of Hβ and the shortward wing of Hα. These DIBs are well known to interstellar but not to many stellar specialists, so that the asymmetries may be mistaken for intrinsic features. The broad emission wings are generally ascribed to electron scattering, although we note difficulties for that interpretation in some objects. Such profiles are known in some Galactic hyper/supergiants and are also seen in both active and quiescent Luminous Blue Variables (LBVs). No prior or current LBV activity is known in these 30 Dor stars, although a generic relationship to LBVs is not excluded; subject to further observational and theoretical investigation, it is possible that these very luminous supergiants are approaching the LBV stage for the first time. Their locations in the HRD and presumed evolutionary tracks are consistent with that possibility. The available evidence for spectroscopic variations of these objects is reviewed, while recent photometric monitoring does not reveal variability. A search for circumstellar nebulae has been conducted, with an indeterminate result for one of them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an analysis of an X-class flare that occurred on 11 June 2014 in active region NOAA 12087 using a newly developed high cadence Image
Selector operated by Astronomical Institute in Ondrejov, Czech Republic. This instrument provides spectra in the 350 - 440 nm wavelength range, which
covers the higher order Balmer lines as well as the Balmer jump at 364 nm. However, no detectable increase in these emissions were detected during
the flare, and support observations from SDO/EVE MEGS-B also show that the Lyman line series and recombination continuum were also suppressed,
particularly when compared to an M-class flare that occurred an hour earlier, and two other X-class flares on the preceding day. The X-class flare under
investigation also showed strong white light emission in SDO/HMI data, as well as an extremely hard electron spectrum ( 3.6), and
-ray emission,
from RHESSI data. This unique combination of datasets allows us to conclude that the white light emission from this flare corresponds to a black body
heated by high-energy electrons (and/or ions), as opposed to optical chromospheric emission from hydrogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few micron and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of
relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Similarly to the case of LIF (Laser-Induced Fluorescence), an equally revolutionary impact to science is expected from resonant X-ray photo-pumping. It will particularly contribute to a progress in high energy density science: pumped core hole states create X-ray transitions that can escape dense matter on a 10 fs-time scale without essential photoabsorption, thus providing a unique possibility to study matter under extreme conditions. In the first proof of principle experiment at the X-ray Free Electron Laser LCLS at SCLAC [Seely, J., Rosmej, F.B., Shepherd, R., Riley, D., Lee, R.W. Proposal to Perform the 1st High Energy Density Plasma Spectroscopic Pump/Probe Experiment", approved LCLS proposal L332 (2010)] we have successfully pumped inner-shell X-ray transitions in dense plasmas. The plasma was generated with a YAG laser irradiating solid Al and Mg targets attached to a rotating cylinder. In parallel to the optical laser beam, the XFEL was focused into the plasma plume at different delay times and pump energies. Pumped X-ray transitions have been observed with a spherically bent crystal spectrometer coupled to a Princeton CCD. By using this experimental configuration, we have simultaneously achieved extremely high spectral (λ/δλ ≈ 5000) and spatial resolution (δx≈70 μm) while maintaining high luminosity and a large spectral range covered (6.90 - 8.35 Å). By precisely measuring the variations in spectra emitted from plasma under action of XFEL radiation, we have successfully demonstrated transient X- ray pumping in a dense plasma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy levels and radiative rates (. A-values) for transitions in Cr-like Cu VI and Zn VII are reported. These data are determined in the quasi-relativistic approach (QR), by employing a very large configuration interaction (CI) expansion which is highly important for these ions. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST and other available theoretical data, for a majority of the levels. The A-values (and resultant lifetimes) are listed for all significantly contributing E1, E2 and M1 radiative transitions among the energetically lowest 322 levels of each ion.