937 resultados para Recycled tires
Resumo:
Since the enactment of LDBEN 9.9394/96, Physical Education began to be understood as a curricular component in school. Thus, we see the need for systematization of content. We observed that the physical education classes at the public schools in Natal/RN from the game content, teachers did not use the existing proposals for systematization. And it was on this reality that the study occurred, aiming to present and discuss a proposal to systematization the game content in physical education classes in elementary and secondary education. Accordingly, we departed of following question: What possibilities of systematization of the game content in school physical education classes?. The methodology used was the action research, which allowed us to structure the intervention plan for the game content, directed to a reflective didactic process. The dialogue with action research provided an opportunity to understand of the proposal of systematization, the knowledge of game content, the planning and process of teaching and learning in physical education lessons developed. We use the proposed systematization the book Educação Física Escolar e Organização Curricular , to direct and organize the lesson plans. As research technique, we use the participant observation, filming, photographic records and field diary, guiding us in the debates and discussions about the field of research. The applications of the lesson plans were carried out in three schools, all located in Natal / RN: Escola Municipal Professora Ivonete Maciel, Escola Municipal Professor Ulisses de Góis e Professor Escola Estadual Josino Macedo. The members of this study were students PIBID-EF-UFRN, teachers, supervisors and school. They made the bridge between research and action, theoretical foundation and pedagogical practice, university and school. The results were advanced for beyond the propositions submitted by the above-mentioned book. For the Elementary School 1, the proposed systematization broadened experiences and learning of knowledge of the game and of playful and body manifestations. Provided an opportunity to know and learn about game of make account, rules, popular games, cooperative games, among others. For Elementary Schools 2 and Middle education, systematized lessons allowed the practical, the incorporation of knowledge of the game and its features: such as rules, origin, meaning of the name, different denominations, among others. The students experienced and learned, popular games, pre-sport games, cooperative games, with recycled material, among others. The treatment from three dimensions of contents: procedural, conceptual and attitudinal, occurred parallel to approach the game content, and in conjunction with our interventions, not being done separately during practice, but an ongoing process during class. This new perspective of work the game, in a systematized way, with applying, description and discussion the activities, allowed elaborate a summary framework of thematizations for game content, by year of teaching
Resumo:
The concrete for centuries constituted an essential structural element in the construction industry due to its relative ease of forming, before the weather durability, low cost, its lower maintenance compared to other materials such as steel. However, when the concrete is exposed to high temperatures tends to lose its mechanical characteristics, and may even result in loss of section, which undermines the stability and mechanical strength of structural elements. The pathologies resulting from exposure to elevated temperatures ranging from cracks, pops up chipping explosives (spalling). Recently, the technology of concrete is closely related to the study of its microstructure. The use of fibers added to concrete has been revealed as a solution to increase the mechanical strength of the concrete, it acts directly on the distribution of efforts to act in the play within the microstructure. In this work we used recycled PET fibers embedded in concrete with 15x2mm fck = 30MPa, water/cement ratio of 0.46, in works made for verification of mechanical strength of this mixture submitted to high temperature. The specimens of concrete with addition of PET fibers were tested after exposure to temperatures: ambient (30ºC), 100°C, 200°C, 300°C, 400°C, 600°C and 900°C. It was found that the concrete loses significant strength when exposed to temperatures above 300°C, however the use of fiber PET may delay the risk of collapse of structures for the formation of a network of channels that facilitate the escape of vapor 'water, reducing the pore pressure inside the structural element
Resumo:
Na colheita mecanizada sem o uso de fogo ocorre deposição de palhada na superfície do solo, a qual pode ser reciclada e reduzir a adubação potássica para a cana-de-açúcar, em relação à cana queimada, o que pode refletir em menor custo de produção. Objetivou-se avaliar o efeito da aplicação de potássio no desenvolvimento inicial da soqueira de primeiro corte da cana-de-açúcar (variedade SP 89-1115), em sistema de colheita sem despalha a fogo. O experimento foi instalado em uma área de primeira soqueira de cana-de-açúcar, cultivada em Latossolo Vermelho, textura argilosa. Os tratamentos foram constituídos por cinco doses de K2O (0 kg ha-1; 32,5 kg ha-1; 65,0 kg ha-1; 130,0 kg ha-1; e 195,0 kg ha-1), na forma de KCl, aplicado em 2009, dispostos em blocos casualizados e com cinco repetições. As variáveis de crescimento avaliadas foram: número de perfilhos, altura de planta e diâmetro de colmo, aos 120 dias após o brotamento. A aplicação de potássio proporcionou incremento com ajuste linear do teor de potássio no solo, nas camadas 0-0,20 m e 0,20-0,40 m de profundidade, atingindo 0,18 cmol c dm-3 e 0,12 cmol c dm-3, respectivamente, para a maior dose de K. A aplicação de K não afetou o número de perfilhos e diâmetro de colmo, mas influenciou a altura, atingindo maior valor na dose de 195,0 kg ha-1 de K2O.
Resumo:
A compactação do solo tem causado decréscimos na produtividade de soja, e os valores de densidade do solo a partir dos quais a produtividade decresce são pouco conhecidos. Assim, este trabalho objetivou avaliar a produtividade de soja (cv. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) 48) em relação à densidade relativa (Dsr) de Latossolo Vermelho textura média (LVd) e argilosa (LVef). em 2001/2002, foi realizado um experimento em casa de vegetação, com amostras coletadas nos dois solos na camada de 0,0-0,2 m, peneirados a 4,0 mm, adubados e compactados em camadas de 3,0 cm, em vasos de 20 cm de altura e 25 cm de diâmetro. Foram estabelecidos quatro níveis de compactação e dois de água no solo (tensão de 0,01 e 0,05 MPa), com três repetições. A soja foi semeada em novembro (duas plantas por vaso) e irrigada duas vezes ao dia. No segundo experimento, no campo (2002/2003), utilizou-se apenas o LVd que foi compactado por meio de passadas de trator com quatro pneus de mesma largura, estabelecendo-se cinco níveis de compactação, com quatro repetições. A soja foi semeada, em dezembro de 2002, no espaçamento de 0,45 m entre linhas e 20 plantas por metro. Foram determinadas a densidade do solo (Ds) e a Ds máxima pelo teste de Proctor, sendo a Dsr obtida por divisão da Ds pela Ds máxima. Na colheita, foi avaliada a produtividade de grãos. A Dsr ótima para a produtividade de soja, em casa de vegetação, foi superior no Latossolo Vermelho eutroférrico argiloso (0,84), comparada à do Latossolo Vermelho caulinítico de textura média (0,75), na tensão de água no solo de 0,01 MPa. No campo, a Dsr ótima para soja foi de 0,80.
Resumo:
The construction industry is responsible for generating a lot of waste because of their activities. Consequently, it is noticeable the occurrence of environmental problems in terms of its disposal in inappropriate places. Faced with this problem, some studies have been conducted with the aim of developing technologies and alternatives for recycling construction and demolition waste (CDW), motivated by the scarcity of natural resources and reduction of environmental problems generated. The research aims to characterize the recycled aggregates derived from construction and demolition waste (CDW) produced in the Greater Natal-RN and analyze the performance of mortar coating produced with recycled aggregates. The study includes the chemical , physical and microstructural characterization of recycled aggregates , as well as conducting microscopic analysis and laboratory tests in the fresh state (consistency index , water retention , bulk density and content of entrained air ) and in the hardened state ( compressive strength , tensile strength in bending , water absorption by immersion and capillary , mass density and void ratio ) for mortars produced from different levels of substitution of aggregates ( 0, 20 %, 40 %, 60 %, 80 % and 100 %). The results were satisfactory, providing mortars produced with recycled aggregates, smaller mass density and dynamic modulus values as well as an increase in the rates of absorption and porosity. The tensile strength in bending and compression for TP1 (1:2:8) trait were lower for mortars produced with recycled aggregates and the best result was 20% for replacement. For the TP2 (1:8) mapping, there was an increase in resistance to traction and compression and the best result was for 100% replacement of natural aggregates by recycled. The experiments led to the conclusion that the technical and economic point of view that the mortars produced with recycled aggregates can be used in construction, only if there is an effective control in production processes of recycled aggregate and at the dosage of mortars
Resumo:
This work investigates the importance of Eco-Materiais applied in the civil construction and the necessity of knowledge of the real estate market, showing the importance of application of recycled products where inserted inside of a bigger scope of the sustainable development which has the subjects as the ambient management. In the theoretical referencial boarded the recycled and perfectly ecological products that demonstrate the applicability of this type of products in the sector of the civil construction, beyond the economic and social placesThe main popouse of the real estate sector is to show the awareness and demonstration in the negotiation of property constructed with these products, therefore, already it is practised by the market of the civil construction where much time sao commercialized by real estate and the its correctors lacking in same knowledge that is more deepened on these materials, having this evidence been made with statistical application of questionnaire and analyzed with base. We finish showing the statistical results with application of 142 questionnaires in a universe of 145 real estate from Natal/RN. With this, we may say that today exists a very strong concern with the environmental laws and the generated ambient impact in the civil construction and that the real estate sector has a feeling that the necessity of if inserting in this process, therefore, the real estate market in our State is in expansion and sensible to the necessity of changes, since the Natal/RN meets in the script of the tourism the International demanding of the professional that a globalized knowledge works with property, so the necessity of understanding the environmental laws and understanding application of the echo-materias used in the construction will give a better quality of life and at the same time to protect the nature
Resumo:
Um equipamento denominado Unidade Móvel de Ensaio da Barra de Tração - UMEB, foi desenvolvido na FCA/UNESP de Botucatu para realizar ensaios de tratores em solo agrícola. Construída a partir de um reboque (trailer), a UMEB foi adaptada para servir como carro dinamométrico instrumentado, utilizado na avaliação do desempenho de tratores submetidos a ensaios na barra de tração. Sua massa total é de 10.500 kg sustentados por um conjunto de seis rodados pneumáticos. Ensaios de campo mostraram que a UMEB proporcionou força de tração acima de 35 kN, mantendo-a constante, em diferentes condições de superfície do solo, mesmo quando a velocidade de deslocamento foi modificada.
Resumo:
This work was carried out to evaluate the performance of a farm tractor fitted with two sets of tires with high lugs and another set of tires with tallow lugs in straw without tillage (corn straw). The travel speeds used were approximately 4, 5, 6 and 7 km h(-1) and a constant pulling force of 25 kN was fixed. Tractor traction, forward speed, slip and consumption of fuel were measured and drawbar power, the ratio between the consumption and power and traction coefficient were calculated. It was observed that the tractor performance was similar to high and low lug tire conditions, in an area covered with corn straw.
Resumo:
The aim of this work is to study the replacement of currently used thermoplastics by composites reinforced with vegetable fibers with several advantages, mainly better mechanical properties, low weight and competitive cost compared to its counterparts. Extrusion and injection molding processes were studied using polypropylene (PP) matrix. The raw materials used were sugar cane bagasse, elephant grass, wood, milk cartons and recycled polypropylene. The composites were tested for bending, tension, hardness and impact resistance, following ASTM standards. The results obtained were extremely positive since they proved that natural fibers as reinforcement can be an important alternative to replace talc and other fillers.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Thermal recovery methods, especially steam injection, have been used to produce heavy oils. However, these methods imply that the metallic casing-cement sheath interface is submitted to thermal cycling. As a consequence, cracking may develop due to the thermal expansion mismatch of such materials, which allows the flow of oil and gas through the cement sheath, with environmental and economical consequences. It is therefore important to anticipate interfacial discontinuities that may arise upon Thermal recovery. The present study reports a simple alternative method to measure the shear strength of casing-sheath interfaces using pushthrough geometry, applied to polymer-containing hardened cement slurries. Polyurethane and recycled tire rubber were added to Portland-bases slurries to improve the fracture energy of intrinsically brittle cement. Samples consisting of metallic casing sections surrounded by hardened polymer-cement composites were prepared and mechanically tested. The effect of thermal cycles was investigated to simulate temperature conditions encountered in steam injection recovery. The results showed that the addition of polyurethane significantly improved the shear strength of the casing-sheath interface. The strength values obtained adding 10% BWOC of polyurethane to a Portland-base slurry more than doubled with respect to that of polyurethane-free slurries. Therefore, the use of polyurethane significantly contributes to reduce the damage caused by thermal cycling to cement sheath, improving the safety conditions of oil wells and the recovery of heavy oils
Resumo:
It presents a solar collector to be used in a system for heating water for bathing, whose main characteristics are low cost and easy manufacturing and assembly. The system operates under natural convection or thermosiphon. The absorbing surface of the collector is formed by twelve PVC pipes of 25 mm outside diameter connected in parallel via connections in T of the same material. The tubes were covered with absorbing fins made with recycled aluminum cans. We studied eight settings between absorber plate, thermal insulating EPS boards and thermal reservoirs 150 and 200 liters. It was determined the most efficient configuration for the correct purpose. We evaluated thermal parameters that proved the viability of the heating system studied
Resumo:
New materials made from industrial wastes have been studied as an alternative to traditional fabrication processes in building and civil engineering. These materials are produced considering some issues like: cost, efficiency and reduction of nvironmental damage. Specifically in cases of materials destined to dwellings in low latitude regions, like Brazilian Northeast, efficiency is related to mechanical and thermal resistance. Thus, when thermal insulation and energetic efficiency are aimed, it s important to increase thermal resistance without depletion of mechanical properties. This research was conducted on a construction element made of two plates of cement mortar, interspersed with a plate of recycled expanded polystyrene (EPS). This component, widely known as sandwich-panel, is commonly manufactured with commercial EPS whose substitution was proposed in this study. For this purpose it was applied a detailed methodology that defines parameters to a rational batching of the elements that constitute the nucleus. Samples of recycled EPS were made in two different values of apparent specific mass (ρ = 65 kg/m³; ρ = 130 kg/m³) and submitted to the Quick-Line 30TM that is a thermophysical properties analyzer. Based on the results of thermal conductivity, thermal capacity and thermal diffusivity obtained, it was possible to assure that recycled EPS has thermal insulation characteristics that qualify it to replace commercial EPS in building and civil engineering industry
Resumo:
This work proposes the development of an innovative material made from a vegetable polyurethane matrix and load of industrial waste, from retread tires, for thermal insulation and environmental comfort. Experimental procedures are presented, as well as the results of the thermal and acoustic performance of this composite material, made from an expansive foam derived from the castor seed oil and fiber of scrap tires. The residue was treated superficially with sodium hydroxide, to eliminate contaminants, and characterized macroscopically and microscopically. Samples were produced with addition of residues at levels of 5%, 10%, 15% and 20% by weight, for determination of thermal properties: conductivity, heat capacity and thermal diffusivity, sound absortion index and density. The results were compared to commercially available thermal insulation and sound absorbing products. According to the analysis of results, it was concluded that the developed composite presents characteristics that qualify it as a thermal insulation with superior performance, compared to commercial available insulation, and sound absorption capacity greater than the castor oil polyurethane s, without addition of the residue
Resumo:
In this work a solar drying system for food dehydration was developed. It is a direct exposition drying apparatus that uses solar energy to heat the circulating air. First, the construction and assembly of this apparatus was described, in which was used scrap wraps of used tires for thermal insulation, allowing the reuse of solid waste, being an ecologically correct recycling option. After, the results obtained in experiments for cashew drying showed the thermal and economical feasibility of the proposed solar drying system, focusing on the process of flour production and in its chemical characterization. It was also demonstrated the social importance of this production for socially excluded people, since the value added to this fruit, in relation to its in nature form, may represent an option for job and income generation. The main features of the proposed dryer are its low cost and its easy fabrication and assembly process. After cashew drying, the obtained product was processed into flour by using a knife mill and it was added crushed rapadura to reduce the rancid taste caused by tannin