761 resultados para Recubrimientos no metálicos
Resumo:
Las armaduras en estructuras bidimensionales de hormigón (losas y láminas) se suelen disponer en dos direcciones, típicamente ortogonales. Sin embargo, a veces, particularmente en zonas en las que las tensiones principales son elevadas, se disponen más de dos familias de armaduras y si la geometría del contorno de la estructura no es regular o no es rectangular es preciso colocar familias de armaduras formando ángulos oblicuos entre sí. En general, las direcciones de las tensiones principales en un punto de una estructura bidimensional no coinciden con las de las armaduras, lo que implica una incertidumbre acerca del trabajo de éstas. Esta problemática que aparece en el diseño usual de las estructuras de hormigón armado y pretensado, no suele estar recogida en la mayoría de las instrucciones. En particular, el tratamiento que presenta la norma española HE acerca del armado de las estructuras y elementos distintos de los monodimensionales, es decir, de la viga, es muy escaso. Este trabajo, que se ha dividido en dos partes, presenta un tratamiento unificado de comprobación de las armaduras en estructuras bidimensionales. En esta primera parte se recoge su aplicación a estructuras, tipos laja y membrana, sometidas a esfuerzos de extensión, es decir, axiles y rasantes, contenidos en su plano medio en el caso de lajas o en su plano tangente a la superficie media en el punto de comprobación, si se trata de una membrana. Como es usual, los esfuerzos, que se determinan a partir de un cálculo elástico y lineal, se mayoran mediante los pertinentes coeficientes de seguridad para obtener los llamados esfuerzos de cálculo. En este articulo, las armaduras en el punto en el que se comprueba la estructura se disponen con la máxima generalidad, es decir, una o varias familias formando ángulos arbitrarios en planta, y colocadas bien en el plano medio o simétricamente en planos paralelos equidistantes del anterior y separados de las caras superior e inferior de la estructura por los mismos recubrimientos. La segunda parte de este trabajo, que representa una extensión de la metodología al caso general de flexión-extensión, es objeto de una siguiente publicación. La metodología en este trabajo tiene en cuenta las ecuaciones, dadas por la elasticidad, de equilibrio, compatibilidad y constitutivas entre los esfuerzos conocidos y las tensiones y deformaciones en ambos materiales, hormigón y acero. Naturalmente, la ecuación constitutiva del hormigón no considera su resistencia a tracción, y por concreción se utiliza la conocida parábola rectángulo con posibilidad de rama descendente. Para el acero se supone para la relación tensiones-deformaciones un diagrama bilineal, es decir, se tiene en cuenta el posible endurecimiento. El cálculo, que se lleva a cabo mediante un simple programa de computador, permite obtener en pocos segundos las curvas de las tensiones y de las deformaciones en cada una de las familias de barras, así como de las tensiones principales en el hormigón en función del factor de amplificación de los esfuerzos. De esta forma se deduce el nivel de seguridad que se alcanza en un punto de la estructura de hormigón armado.
Resumo:
Esta tesis está dedicada al análisis de las guías de onda y el diseño de los componentes pasivos con énfasis en aplicaciones de alta frecuencia. En primer lugar, se lleva a cabo el análisis de las guías de onda con conductores metálicos no ideales, con el objetivo de establecer el límite superior en frecuencia de las aproximaciones habitualmente utilizadas en microondas para el cálculo de las pérdidas óhmicas. Posteriormente, se presenta el diseño de diferentes componentes pasivos de guía de ondas: filtros, transductores de modos ortogonales (OMT), polarizadores, duplexores y alimentadores de antena, funcionando en frecuencias desde 10 a 750 GHz. Para el correcto diseño de componentes a altas frecuencias se requiere, en primer lugar, comprender los nuevos procesos de fabricación y después adecuar los diversos componentes para cumplir especificaciones eléctricas y geométricas simultáneamente. Para esto, se presentan modificaciones y nuevas geometrías de guiado de ondas para diferentes aplicaciones y procesos tecnológicos. Además se discuten sus ventajas sobre las soluciones ya existentes. Además, el trabajo presentado en esta tesis se ocupa del desarrollo completo de dispositivos: diseño, fabricación y caracterización de los componentes ya mencionados. Por último, algunos de los dispositivos desarrollados han sido diseñados para ser integrados en diferentes sistemas. De esta forma, se mejoran las prestaciones y capacidades de dichos sistemas.
Resumo:
En ingeniería los materiales están sujetos a un proceso de degradación desde el mismo momento en el que concluye su proceso de fabricación. Cargas mecánicas, térmicas y agresiones químicas dañan las piezas a lo largo de su vida útil. El daño generado por procesos de fatiga, corrosión y desgaste son unos pocos ejemplos de posible deterioro. Este deterioro de las piezas se combate mediante la prevención en la etapa de diseño, a través de reparaciones periódicas y mediante la sustitución de piezas en servicio. La mayor parte de los tipos de daño que pueden sufrir los materiales durante su vida útil se originan en la superficie. Por esta razón, el objetivo de los tratamientos superficiales es inhibir el daño a través de la mejora de las propiedades superficiales del material, intentando no generar sobrecostes inasumibles en el proceso productivo ni efectos colaterales notablemente perjudiciales. En general, se ha de llegar a una solución óptima entre el coste del tratamiento superficial y el beneficio generado por el aumento de la vida útil del material. En esta tesis se estudian los efectos del tratamiento superficial de aleaciones metálicas mediante ondas de choque generadas por láser. Su denominación internacional más empleada "Láser Shock Processing" hace que se emplee la denominación de procesos de LSP para referirse a los mismos. También se emplea la denominación de "Láser Peening" por semejanza al tratamiento superficial conocido como "Shot Peening", aunque su uso sólo está generalizado en el ámbito industrial. El tratamiento LSP es una alternativa eficaz a los tratamientos tradicionales de mejora de propiedades superficiales, mejorando la resistencia a la fatiga, a la corrosión y al desgaste. El tratamiento LSP se basa en la aplicación de uno o varios pulsos láser de elevada intensidad (superior a 1 GW/cm2) y con duración en el dominio de los nanosegundos sobre la superficie de la pieza metálica a tratar. Esta, bien se recubre con una fina capa de medio confinante (generalmente una fina capa de agua) transparente a la radiación láser, bien se sumerge en el medio confinante (también se usa agua). El pulso láser atraviesa el medio confinante hasta llegar a la superficie de la pieza. Es entonces cuando la superficie inmediatamente se vaporiza y se ioniza, pasando a estado de plasma. Como el plasma generado es confinado por el medio confinante, su expansión se limita y su presión crece. De este modo, el plasma alcanza presiones de varios GPa y crea dos ondas de choque: una de las cuales se dirige hacia el medio confinante y la otra se dirige hacia la pieza. Esta última produce un cráter microscópico por aplastamiento mecánico, generándose deformación plástica y un campo de tensiones residuales de compresión que mejoran las propiedades superficiales del material. La capacidad de los procesos LSP para mejorar las propiedades de materiales metálicos es indiscutible. En la bibliografía está reflejado el trabajo experimental y de simulación que se ha llevado a cabo a lo largo de los años en orden a optimizar el proceso. Sin embargo, hay pocos estudios que hayan tratado exhaustivamente la física del proceso. Esto es debido a la gran complejidad de la fenomenología física involucrada en los procesos LSP, con comportamientos no lineales tanto en la generación y dinámica del plasma como en la propagación de las ondas de choque en el material. Además, el elevado coste de los experimentos y su duración, así como el gran coste computacional que debían asumir los antiguos modelos numéricos, dificultó el proceso de optimización. No obstante, los nuevos sistemas de cálculo son cada vez más rápidos y, además, los programas de análisis de problemas no lineales por elementos finitos son cada vez más sofisticados, por lo que a día de hoy es posible desarrollar un modelo exhaustivo que no solo permita simular el proceso en situaciones simplificadas, sino que pueda ser empleado para optimizar los parámetros del tratamiento en casos reales y sobre áreas extensas. Por esta razón, en esta tesis se desarrolla y se valida un modelo numérico capaz de simular de manera sistemática tratamientos LSP en piezas reales, teniendo en cuenta la física involucrada en los mismos. En este sentido, cabe destacar la problemática del tratamiento LSP en placas delgadas. La capacidad del LSP para inducir tensiones residuales de compresión bajo la superficie de materiales con un espesor relativamente grueso (> 6 mm) con objeto de mejorar la vida en fatiga ha sido ampliamente demostrada. Sin embargo, el tratamiento LSP en especímenes delgados (típicamente < 6 mm, pero también mayores si es muy alta la intensidad del tratamiento) conlleva el efecto adicional del doblado de la pieza tratada, un hecho que puede ser aprovechado para procesos de conformado láser. Este efecto de doblado trae consigo una nueva clase de problemas en lo referente a los perfiles específicos de tensiones residuales en las piezas tratadas, ya que al equilibrarse las tensiones tras la retirada de su sujeción puede afectar considerablemente el perfil de tensiones residuales obtenido, lo que posiblemente puede derivar en la obtención de un perfil de tensiones residuales no deseado y, lo que puede ser aún más crítico, una deformación indeseable de la pieza en cuestión. Haciendo uso del modelo numérico desarrollado en esta Tesis, el análisis del problema del tratamiento LSP para la inducción de campos de tensiones residuales y la consecuente mejora de la vida en fatiga en piezas de pequeño espesor en un modo compatible con una deformación asumible se aborda de forma específica. La tesis está estructurada del siguiente modo: i) El capítulo 1 contiene una introducción al LSP, en la que se definen los procesos de tratamiento de materiales mediante ondas de choque generadas por láser. A continuación se expone una visión panorámica de las aplicaciones industriales de la tecnología LSP y, por último, se realiza una comparativa entre la tecnología LSP y otras tecnologías en competencia en el ámbito industrial: Shot Peening, Low Plasticity Burnishing y Waterjet Peening. ii) El capítulo 2 se divide en dos partes: fundamentos físicos característicos del tratamiento LSP y estado del arte de la modelización de procesos LSP. En cuanto a la primera parte, fundamentos físicos característicos del tratamiento LSP, en primer lugar se describe la física del tratamiento y los principales fenómenos que tienen lugar. A continuación se detalla la física de la interacción confinada en agua y la generación del pulso de presión asociado a la onda de choque. También se describe el proceso de saturación de la presión máxima por ruptura dieléctrica del agua y, por último, se describe la propagación de las ondas de choque y sus efectos en el material. En cuanto a la segunda parte, el estado del arte de la modelización de procesos LSP, recoge el conocimiento preexistente al desarrollo de la propia Tesis en los siguientes campos: modelización de la generación del plasma y su expansión, modelización de la ruptura dieléctrica del medio confinante, modelización del pulso de presión aplicado al material y la respuesta del mismo: inducción de tensiones residuales y deformaciones. iii) El capítulo 3 describe el desarrollo de un modelo propio para la simulación de las tensiones residuales y las deformaciones generadas por procesos LSP. En él se detalla la simulación de la propagación del pulso de presión en el material, los pormenores de su puesta en práctica mediante el método de los elementos finitos, la determinación de parámetros realistas de aplicación y se establece un procedimiento de validación de los resultados. iv) El capítulo 4 contiene los resultados de la aplicación del modelo a distintas configuraciones de interés en tratamientos LSP. En él se recoge un estudio del tratamiento LSP sobre áreas extensas que incluye un análisis de las tensiones residuales inducidas y un análisis sobre la influencia de la secuencia de barrido de los pulsos en las tensiones residuales y en las deformaciones. También se presenta un estudio específico de la problemática del tratamiento LSP en piezas de pequeño espesor y se detallan dos casos prácticos abordados en el CLUPM de gran interés tecnológico en función de las aplicaciones reales en las que se ha venido trabajando en los últimos años. v) En el capítulo 5 se presentan las conclusiones derivadas de los resultados obtenidos en la tesis. Concretamente, se destaca que el modelo desarrollado permite reproducir las condiciones experimentales de los procesos de LSP reales y predecir los efectos mecánicos inducidos por los mismos. Los anexos incluidos como parte accesoria contienen información importante que se ha utilizado en el desarrollo de la Tesis y que se desea incluir para hacer el volumen autoconsistente: i) En el anexo A se presenta una revisión de conceptos básicos sobre el comportamiento de los sólidos sometidos a ondas de choque [Morales04]. ii) El anexo B contiene la resolución analítica de la ecuación de ritmo utilizada en el código DRUPT [Morales04]. iii) El anexo C contiene la descripción de los procedimientos de uso del modelo de simulación desarrollado en la Tesis y el código fuente de la subrutina OVERLAP desarrollada para programar el solapamiento de pulsos en tratamientos LSP sobre áreas extensas. iv) El anexo D contiene un resumen de las principales técnicas para la medición de las tensiones residuales en los materiales [PorrolO] y [Gill2]. v) El anexo E contiene una descripción de las instalaciones experimentales del CLUPM en el que se han desarrollado los procesos LSP utilizados en la validación del modelo desarrollado [PorrolO].
Resumo:
El trabajo que se llevará a cabo se basa en el desarrollo de nuevos materiales que sean capaces de resistir las condiciones extremas a las que estarían expuestos en el interior de un reactor de fusión nuclear, como son los altos choques térmicos y los altos flujos iónicos. Actualmente se está investigando en el potencial del wolframio nanoestructurado como material de primera pared (en inglés PFM: Plasma Facing Material). La principal ventaja de éste frente al wolframio masivo radica en su gran densidad de fronteras de grano que hacen que el material sea más resistente a la irradiación. El objetivo de este trabajo será la búsqueda de las condiciones óptimas para la fabricación de recubrimientos de wolframio nanoestructurado mediante la técnica de pulverización catódica ("sputtering") en diferentes configuraciones, continuo ("Direct Current Magnetron Sputtering" o DCMS) y/o pulsado ("High Power Impulse Magnetron Sputtering" o HiPIMS) y caracterizar sus propiedades como PFM mediante perfilometría, microscopía óptica, microscopía electrónica de barrido ("Scanning Electron Microscope" o SEM) y difracción de rayos X ("X-Ray Diffraction" o XRD). A su vez, se realizará un ensayo de implantación con un plasma pulsado de He para analizar los efectos de la irradiación en uno de los recubrimientos. Abstract: The work that will be carried out is based on the development of new materials capable of withstanding the extreme conditions that they will have to face inside a nuclear fusion reactor, such as high thermal loads and high ion fluxes. Currently, nanostructured tungsten potential is being investigated as a plasma facing material (PFM). The main advantage over coarse grain tungsten is its high density of grain boundaries which make the material more resistant to irradiation. The project´s main objective will be the search of the optimal conditions that will allow us to fabricate nanostructured tungsten thin films by using the sputtering technique in different configurations, such as DCMS (Direct Current Magnetron Sputtering) and/or HiPIMS (High Power Impulse Magetron Sputtering) and characterize their properties as a PFM by perfilometry, optical microscopy, SEM (Scanning Electron Microcopy) and XRD (X-Ray Diffracion) analysis. Moreover, an implantation test with a He pulsed plasma will be carried out to analyze the effects of irradiation on one of the coatings.
Resumo:
El desarrollo de bioqueroseno de diferentes orígenes y su uso creciente, hacen necesario el estudio de la compatibilidad estos nuevos combustibles con los materiales y recubrimientos con los que se encuentra en contacto. Por tanto, el presente proyecto estudia la compatibilidad de los bioquerosenos mezclados en diferentes proporciones con queroseno mineral, para evaluar posteriormente su compatibilidad con diferentes polímeros y composites presentes en la estructura de un avión.Currently there is a big interest to increase the sources of alternative fuels for aviation to get a reduction of their carbon footprint and the deep energetic dependence from fossil fuels of different countries. Although there are studies about how to produce this alternative fuel and how to accomplish the standards for a good performance in the aircraft turbines, there are no studies about how these fuels could affect the different materials of airplanes. In this context this work describes the compatibility of biokerosene blends of coconut, babassu and palm kernel with commercial Jet A-1 testing airplane polymeric materials, metals and composites. As a conclusion, all material samples show a good compatibility with the fuel blends tested.
Resumo:
El proyecto que se presenta a continuación recoge la adaptación de una Central Térmica de carbón al cumplimiento de la DIRECTIVA 2010/75/UE DEL PARLAMENTO EUROPEO Y DEL CONSEJO de 24 de noviembre de 2010 sobre las emisiones industriales. La Central sobre la que se realiza el proyecto tiene un grupo térmico de carbón suscritico refrigerado por agua, con una potencia a plena carga de 350 MWe y de 190 MWe a mínimo técnico. Genera 1 090 t/h de vapor a 540 °C y 168 kg/cm2 funcionando a plena carga. Actualmente las emisiones de NOx son de 650 mg/m3, (condiciones normales, seco, 6 % O2). El objeto del proyecto es reducir estas emisiones a un valor máximo de 200 mg/m3 en las mismas condiciones. El proyecto analiza detalladamente las condiciones actuales de operación de la instalación en cuanto a combustible utilizado, horas de funcionamiento, condiciones climáticas y producción. Se analiza así mismo, todas las técnicas disponibles en mercado para la reducción del NOx, diferenciando entre medidas primarias (actúan sobre los efectos de formación) y secundarias (limpieza de gases). Las medidas primarias ya están implementadas en la central, por tanto, el proyecto plantea la reducción con medidas secundarias. De las medidas secundarias analizadas se ha seleccionado la instalación de un Reactor de Reducción Selectiva Catalítica (Reactor SCR). Tras un análisis de los diferentes reactores y catalizadores disponibles se ha seleccionado un reactor de configuración High-dust, una disposición de catalizador en 3 capas más 1, cuyos componentes están basados en óxidos metálicos (TiO2, V2O5, WO3) y estructura laminar. Se ha buscado la instalación del reactor para operar a una temperatura inferior a 450 °C. Como agente reductor se ha seleccionado NH3 a una dilución del 24,5 %. El proyecto recoge también el diseño de todo el sistema de almacenamiento, evaporación, dilución e inyección de amoniaco. El resultado del proyecto garantiza una concentración en los gases de salida por la chimenea inferior 180 mg/m3(n) de NOx. La reducción del NOx a los límites establecidos, tienen un coste por MWh neto generado para la central, trabajando 60 % a plena carga y 40 % a mínimo técnico y una amortización de 10 años, de 4,10 €/MWh. ABSTRACT The following project shows the compliance adjustment of a coal-fired power station to the 2010/75/EU Directive of the European Parliament and Council 24th November 2010 on industrial emissions. The project is based on a power station with a subcritical thermal coal unit, cooled with water, with a maximum power of 350 MWe and a technical minimum of 190 MWe. It produces 1 090 t/h of steam at 540 ° C and 168 kg/cm2 operating under full load. Currently, NOx emissions are 650 mg / m3 (normal conditions, dry, 6% O2). The project aims to reduce these emissions to a maximum value of 200 mg / m3 under the same conditions. The project analyses in detail the current operating conditions of the system in terms of fuel used, hours of operation, climatic conditions and production. In addition, it also analyses every available technique of NOx reduction on the market, distinguishing between primary (acting on the effects of formation) and secondary measures (gas cleaning). Primary measures are already implemented in the plant, thus proposing reduction with secondary measures. Among the secondary measures analyzed, it has been selected to install a Selective Catalytic Reduction Reactor (SCR Reactor). Having researched the different reactors and catalysts available, for the reactor has been selected High-dust configuration, an arrangement of catalyst in 3 layers plus 1, whose components are based on metal oxides (TiO2, V2O5, WO3) and laminar structure. The reactor has been sought facility to operate at a temperature below 450 ° C. NH3 diluted to 24,5 % has been selected as reducing agent. The project also includes the design of the entire storage system, evaporation, dilution and ammonia injection. The results of the project ensure a gas concentration in the lower chimney exit below 180 mg / m3(n) NOx. The reduction of NOx to the established limits has a cost per net MWh generated in the plant, working at 60% of full load and at 40% of technical minimum, with an amortization of 10 years, 4,10 € / MWh.
Resumo:
El objetivo del presente Proyecto Fin de Carrera (PFC) consiste en obtener la representación tridimensional de vainas de bala de la batalla del Jarama de la Guerra Civil Española, mediante la utilización de tecnología escáner láser 3D. Se plantea en segundo lugar el análisis del comportamiento del escáner y de la modelización 3D en relación al material de las vainas y la corrosión que se ha producido en ellas. Se realizaron ensayos con vainas y puntas de balas de materiales metálicos de mayor o menor complejidad y se concluye con el estudio de las diversas vainas de bala de la Batalla del Jarama de la Guerra Civil Española seleccionadas para este trabajo. El modelo se obtendrá con una precisión interna de ± 1 mm.
Resumo:
Esta Tesis Doctoral aborda el estudio de la resistencia a carga concentrada transversal del alma de vigas metálicas cuando se dispone un nervio inferior de rigidez, que puede materializarse mediante una célula triangular soldada al ala inferior de la viga y sobre el que se aplica directamente la carga. En primer lugar se presenta, de una forma cualitativa, las mejoras resistentes que aporta este diseño frente a la resistencia de una viga doble T (o alma equivalente de una sección cajón) con el ala inferior exenta. Se concluye que esta solución tiene gran interés de cara al diseño de puentes empujados, ya que, con una ejecución muy simple, puede mejorarse de forma sustancial la resistencia a carga concentrada transversal del alma sin recurrir a soluciones mucho más costosas como disponer rigidización longitudinal o, en última instancia, aumentar el espesor de alma por motivos resistentes en una fase constructiva. Se analizan en detalle todas las investigaciones realizadas, a lo largo de más de 80 años, sobre la resistencia de vigas metálicas a carga concentrada transversal, llevadas a cabo únicamente sobre vigas doble T con o sin rigidización longitudinal. Se centra el análisis en investigar los mecanismos resistentes identificados, con objeto de determinar si las distintas formulaciones planteadas contemplan mecanismos de resistencia aplicables al caso de vigas con nervio de rigidez. Se profundiza posteriormente en el análisis de la contribución de un nervio de rigidez a la resistencia a carga concentrada transversal. A través de modelos numéricos de elementos finitos no lineales, se simula la resistencia última de secciones reales de puentes metálicos de tipo doble T a las que se añade un nervio de rigidez y se constata el incremento notable en la resistencia que aporta el nervio. Se identifican los mecanismos resistentes involucrados, mediante un modelo híbrido de elementos finitos con el nervio modelizado con elementos viga, de forma que se obtienen resultados de esfuerzos y movimientos en el propio nervio, como viga en flexión, que resultan de gran claridad para la interpretación estructural del fenómeno. Con ello, se compara la resistencia calculada con la vigente formulación de EAE y EN1993 con la obtenida en vigas doble T y vigas con nervio de rigidez y se concluye que tal formulación es insuficiente para evaluar la resistencia de estas últimas, ya que no reproduce el mecanismo de resistencia conjunta del nervio y rigidizadores, adicional a la simple contribución del alma a la resistencia. A la vista de ello se plantea una formulación alternativa, que contempla de forma explícita los mecanismos resistentes complementarios identificados: flexión longitudinal del nervio, cuando los rigidizadores están más separados que la longitud de alma resistente, y contribución directa de los rigidizadores a la resistencia plástica cuando se aproximan a menor separación que la longitud de alma resistente. Las conclusiones derivadas de todo el análisis anterior se aplican al diseño de un caso real de puente empujado, en el que se suprime toda la rigidización longitudinal y, sobre unas almas exentas de espesor suficiente por resistencia a cortante, se dispone un nervio de rigidez. Los mecanismos resistentes identificados en la Tesis Doctoral, apoyados en la formulación planteada al efecto, permiten al ingeniero alternativas de diseño frente a las posibilidades que le otorga la vigente formulación de resistencia a carga concentrada en vigas doble T. Así, en efecto, una viga doble T que requiera una mayor resistencia a carga concentrada transversal sólo puede reforzarse incrementando el espesor del alma. Por el contrario, con el nervio de rigidez, el ingeniero puede actuar sobre otras variables de diseño: incrementar la rigidez del nervio manteniendo el espesor del alma, para potenciar el mecanismo de flexión longitudinal del nervio; o bien aproximar rigidizadores, más incluso que la longitud de alma resistente, en cuyo caso limitarán ésta a su separación pero contribuirán a incrementar el valor total de la resistencia, superando una insuficiencia de la vigente formulación ya detectada en diversas investigaciones recientes.
Resumo:
Texto en valenciano y en latín
Resumo:
El trabajo fin de máster, titulado “ANÁLISIS DEL COMPORTAMIENTO MECÁNICO DE UN RACK DE BATERÍAS FRENTE A EVENTOS DE CHOQUE” fue desarrollado por el estudiante D. Javier Rivera Hoyos como proyecto final del Máster Universitario en Ingeniería Mecánica de la UPM y que estuvo bajo la tutoría del Dr. D. Luis Martínez, profesor y director de la Unidad de Biomecánica del INSIA-UPM. Este TFM se llevó a cabo en el desarrollo del proyecto europeo OPERA4FEV, el cual hace parte del 7º Programa Marco de la Comisión Europea realizado por diez entidades, de seis países diferentes, especializadas en diversos campos de la ingeniería, teniendo como objetivo, el proponer una solución alternativa que sea barata, ligera y versátil, que mejore la tecnología actual, la cual está basada en la utilización de racks metálicos para el empaquetamiento de las baterías de los vehículos eléctricos. Para cumplir con ese objetivo, se ha propuesto desarrollar un rack para baterías fabricado en un material termoplástico, además del rediseño de los componentes internos del mismo, con el cumpliendo de los requisitos normativos de seguridad exigidos para este tipo de dispositivos. El tema escogido para la elaboración del Trabajo Fin de Master, trata del análisis de la resistencia mecánica de un rack de baterías, el cual fue llevado a cabo mediante el uso de la técnica de los elementos finitos, empleando para ello la suite de HYPERWORWS, una serie de programas especializados en simulación que permite la creación de modelos de elementos finitos a partir de diseños CAD en 3D. Con el uso de estos programas fue posible la realización de ensayos virtuales los cuales permitieron la representación de las condiciones características de diferentes eventos de choque. Se siguió la metodología tradicional para el análisis por elementos finitos, que inicia con una geometría inicial creada en un programa CAD y la cual posteriormente es dividida en elementos finitos. A continuación, se procede a la asignación de cargas y condiciones de contorno completando el modelo y dejándolo preparado para el proceso de cálculo. Finalmente, los resultados fueron analizados y se tomaron las decisiones oportunas para llevar a cabo las modificaciones en el modelo que permitieran mejorar los resultados. Con este TFM se logró realizar la evaluación de una primera propuesta de diseño de un rack de baterías para un vehículo industrial tipo N2, determinando las áreas críticas de fallo y aportando soluciones para su mejoramiento.
Resumo:
Enc. piel gofrada con cierres metálicos
Resumo:
La motivación principal de este trabajo fin de máster es el estudio del comportamiento en rotura de un material metálico muy dúctil como es una aleación de aluminio. El conocimiento del comportamiento de los materiales en su régimen plástico es muy valioso, puesto que el concepto de ductilidad de un material está relacionado directamente con la seguridad de una estructura. Un material dúctil es aquel que resiste estados tensionales elevados y alcanza altos niveles de deformación, siendo capaz de absorber gran cantidad de energía antes de su rotura y permitiendo una redistribución de esfuerzos entre elementos estructurales. Por tanto, la utilización de materiales dúctiles en el mundo de la construcción supone en general un incremento de la seguridad estructural por su “capacidad de aviso”, es decir, la deformación que estos materiales experimentan antes de su rotura. Al contrario que los materiales frágiles, que carecen de esta capacidad de aviso antes de su rotura, produciéndose ésta de forma repentina y sin apenas deformación previa. En relación a esto, el ensayo de tracción simple se considera una de las técnicas más sencillas y utilizadas en la caracterización de materiales metálicos, puesto que a partir de la curva fuerza-desplazamiento que este ensayo proporciona, permite obtener de forma precisa la curva tensión-deformación desde el instante de carga máxima. No obstante, existen dificultades para la definición del comportamiento del material desde el instante de carga máxima hasta rotura, lo que provoca que habitualmente no se considere este último tramo de la curva tensión-deformación cuando, tal y como sabemos, contiene una información muy importante y valiosa. Y es que, este último tramo de la curva tensión-deformación es primordial a la hora de determinar la energía máxima que un elemento es capaz de absorber antes de su rotura, aspecto elemental, por ejemplo para conocer si una rotura ha sido accidental o intencionada. Por tanto, el tramo final de la curva tensión-deformación proporciona información muy interesante sobre el comportamiento del material frente a situaciones límite de carga. El objetivo por tanto va a ser continuar con el trabajo realizado por el doctor Ingeniero de Caminos, Canales y Puertos, Fernando Suárez Guerra, el cual estudió en su Tesis Doctoral el comportamiento en rotura de dos materiales metálicos como son, un Material 1: acero perlítico empleado en la fabricación de alambres de pretensado, y un Material 2: acero tipo B 500 SD empleado como armadura pasiva en hormigón armado. Estos materiales presentan un comportamiento a rotura claramente diferenciado, siendo más dúctil el Material 2 que el Material 1. Tomando como partida esta Tesis Doctoral, este Trabajo Fin de Máster pretende continuar con el estudio del comportamiento en rotura de un material metálico mucho más dúctil que los experimentados anteriormente, como es el aluminio. Analizando el último tramo de la curva tensión-deformación, que corresponde al tramo entre el instante de carga máxima y el de rotura del material. Atendiendo a los mecanismos de rotura de un material metálico, es necesario distinguir dos comportamientos distintos. Uno que corresponde a una rotura en forma de copa y cono, y otro que corresponde a una superficie de rotura plana perpendicular a la dirección de aplicación de la carga.
Resumo:
Dada la gran amplitud temática, que puede incluirse dentro del epígrafe "Consideraciones sísmicas en el proyecto de puentes" ha parecido conveniente reducirlo aquí a los tipos más frecuentes, de hormigón armado y pretensado, que aparecen en las modernas autopistas. No se comentan, por lo tanto, otros grupos estructurales de puentes, como colgantes, atirantados, arcos etc., ni metálicos, que si bien de gran interés, implicarían una excesiva extensión a esta exposición.
Resumo:
Una intervención de refuerzo tiene como objetivo incrementar la capacidad estructural de un elemento al que, o bien, se le considera insuficiente, o bien, debe aumentar su capacidad portante, aun cumpliendo con los requisitos estructurales originales. El refuerzo se puede acometer por la cara inferior o superior del forjado, por lo cual se analizarán a continuación el refuerzo superior mediante la adición de una capa de hormigón, refuerzo inferior mediante una banda resistente a tracción, ya sea con una pletina de acero u otro elemento como la fibra de carbono, y por último el refuerzo con perfiles metálicos inferiores. Estos últimos han tenido un mayor desarrollo en los últimos años gracias a las patentes comerciales, de las cuales cabe destacar una serie de ventajas, así como señalar carencias generales que se presentan en todas ellas. El objetivo de este trabajo de fin de grado es el análisis del campo de validez de esta serie de métodos propuestos en el Cuaderno Puesta en carga en obras de refuerzo de hormigón sometidas a flexión, de José Miguel Ávila Jalvo y Miguel Ávila Nieto. En él se consideran los elementos sometidos a flexión, forjados de piso y vigas, de los que se supone una carencia en su capacidad resistente. De esta manera será posible indicar que solución es más propicia en cada situación.
Resumo:
Los accidentes con implicación de autocares en los que se producen vuelcos ponen de manifiesto la especial agresividad de los mismos, como lo confirman las estadísticas. Como medida para mejorar la seguridad de los Vehículos de Grandes Dimensiones para el Transporte de Pasajeros (V.G.D.T.P.) frente a vuelco fue aprobado por las Naciones Unidas el Reglamento Nº 66 de Ginebra. Este reglamento establece los requisitos mínimos que las estructuras de los vehículos de grandes dimensiones deben cumplir con respecto a vuelco. El reglamento 66 ha supuesto un paso adelante muy importante en relación con la seguridad de los autocares, puesto que especifica por primera vez requerimientos estructurales a este tipo de vehículos, y en general ha supuesto una mejora del vehículo . Por otro lado, a consecuencia de la obligatoriedad de instalación de cinturones de seguridad, existe una unión entre pasajeros y vehículo, pero como no se trata de una unión rígida, hay que contemplar el porcentaje de la masa de los ocupantes que influye en la absorción de energía de la estructura. Además la retención de los ocupantes con cinturones de seguridad influye en la energía a absorber por la estructura del vehículo en dos aspectos, por un lado aumenta la masa del vehículo y en el otro se incrementa la altura el centro de gravedad. Esta situación a conducido a elaborar por parte de las Naciones Unidas la revisión 01 del Reglamento 66, en el que se considera que el 50 % de la masa total de los pasajeros posee una unión rígida con la estructura del vehículo, y por lo tanto debe ser tenida en cuenta si el vehículo posee sistemas de retención. En la situación actual, con limitaciones de peso del vehículo y peso por eje, los elementos de confort, seguridad y espacio para maleteros contribuyen a aumentar el peso del vehículo. Esto unido a la dificultad de introducción de cambios radicales en la concepción actual de fabricación de este tipo de vehículos por suponer unas pérdidas importantes para los fabricantes existentes, tanto en su conocimiento del producto como en su metodología de proceso, conlleva la necesidad cada vez más agobiante de analizar y evaluar otras alternativas estructurales que sin suponer grandes revoluciones a los productos actualmente en fabricación los complementen permitiendo adaptarse a los nuevos requerimientos en seguridad. Recientes desarrollos en la relación costo-beneficio de los procesos para la producción de materiales celulares metálicos de baja densidad, tales como las espumas metálicas, los posiciona como una alternativa de especial interés para la aplicación como elementos de absorción de energía para reforzar estructuras. El relleno con espumas metálicas puede ser más eficiente en términos de optimización de peso comparado con el aumento de espesor de los perfiles estructurales, dado que la absorción de energía se produce en una fracción relativamente pequeña de los perfiles, en las denominadas rótulas plásticas. La aplicación de espumas de relleno metálicas en estructuras de vehículos se está empezando a emplear en determinadas zonas de los vehículos de turismo, siendo totalmente novedosa cualquier intento de aplicación en estructuras de autobuses y autocares. Conforme a lo expuesto, y con el objeto de resolver estos problemas, se ha elaborado el presente trabajo de tesis doctoral, cuyos objetivos son: -Desarrollar un modelo matemático, que permita simular el ensayo de vuelco, considerando la influencia de los ocupantes retenidos con cinturones de seguridad para evaluar su influencia en la absorción de energía de la estructura. -Validar el modelo matemático de vuelco de la estructura mediante ensayos de secciones representativas de la estructura del vehículo y mediante el ensayo de un vehículo completo. -Realizar un estudio de las propiedades de las espumas metálicas que permitan incorporarlas como elemento de absorción de energía en el relleno de componentes de la superestructura de autobuses y autocares. -Desarrollar un modelo matemático para evaluar el aporte del relleno de espuma metálica en la absorción de energía ante solicitaciones por flexión estática y dinámica en componentes de la superestructura de autobuses o autocares. -Realizar un programa de ensayos a flexión estáticos y dinámicos para validar el modelo matemático del aporte del relleno de espuma metálica sobre componentes de la superestructura de autobuses y autocares. . -Incorporar al modelo matemático de vuelco de la estructura, los resultados obtenidos sobre componentes con relleno de espuma metálica, para evaluar el aporte en la absorción de energía. -Validar el modelo de vuelco de la estructura del autobús o autocar con relleno de espuma metálica, mediante ensayos de secciones de carrocería. ABSTRACT Accidents involving buses in which rollovers occur reveal the special aggressiveness thereof, as the statistics prove. As a measure to improve the safety of large vehicles for the transport of passengers to rollover, Regulation 66 of Geneva was approved by the United Nations. This regulation establishes the minimum requirements that structures of large vehicles must comply with respect to rollovers. The regulation 66 has been a major step forward in relation to the safety of coaches, since it specifies structural requirements to such vehicles and has been an improvement for the vehicle. In turn, as a result of compulsory installation of safety belts, there is contact between passengers and vehicle, but as it is not a rigid connection we must contemplate the percentage of the mass of the occupants that impacts on the energy absorption of the structure. Thus, the passengers’ restraining modifies the energy to absorb by the vehicle in two different aspects: On the one hand, it increases the vehicle weight and on the other the height of the center of gravity. This circumstance has taken the United Nations to elaborate Revision 01 of Regulation 66, in which it is considered that the 50 percent of passengers’ mass has a rigid joint together with the vehicle structure and, therefore, the passengers’ mass mentioned above should be highly considered if the vehicle has seat belts. In the present situation, in which limitations in vehicle weight and weight in axles are stricter, elements of comfort, safety and space for baggage are contributing to increase the weight of the vehicle. This coupled with the difficulty of introducing radical changes in the current conception of manufacturing such vehicles pose significant losses for existing manufacturers, both in product knowledge and process methodology, entails the overwhelming need to analyze and evaluate other structural alternatives without assuming relevant modifications on the products manufactured currently allowing them to adapt to the new safety requirements. Recent developments in cost-benefit processes for the production of metallic foams of low density, such as metal foams, place them as an alternative of special interest to be used as energy absorbers to strengthen structures. The filling with metal foams can be more efficient in terms of weight optimization compared with increasing thickness of the structural beams, since the energy absorption occurs in a relatively small fraction of the beams, called plastic hinges. The application of metal filling foams in vehicle structures is beginning to be used in certain areas of passenger cars, being an innovative opportunity in structures for application in buses and coaches. According to the mentioned before, and in order to come forward with a solution, this doctoral thesis has been prepared and its objectives are: - Develop a mathematical model to simulate the rollover test, considering the influence of the occupants held with seat belts to assess their influence on energy absorption structure. - Validate the mathematical model of the structure rollover by testing representative sections of the vehicle structure and by testing a complete vehicle. - Conduct a study of the properties of metal foams as possible incorporation of energy absorbing element in the filler component of the superstructure of buses and coaches. - Elaborate a mathematical model to assess the contribution of the metal foam filling in absorbing energy for static and dynamic bending loads on the components of buses or coaches superstructure. - Conduct a static and dynamic bending test program to validate the mathematical model of contribution of metal foam filling on components of the superstructure of buses and coaches bending. - To incorporate into the mathematical model of structure rollover, the results obtained on components filled with metal foam, to evaluate the contribution to the energy absorption. - Validate the rollover model structure of the bus or coach filled with metal foam through tests of bay sections. The objectives in this thesis have been achieved successfully. The contribution calculation model with metal foam filling in the vehicle structure has revealed that the filling with metal foam is more efficient than increasing thickness of the beams, as demonstrated in the experimental validation of bay sections.