937 resultados para Rectangular hollow profiles in-plane bending hermitian functions
Resumo:
Adhesion involves interactions between cells or cells with extracellular matrix components and is a fundamental process for all multicellular organisms as well as many pathogenic microbes. Integrins are heterodimeric transmembrane proteins that function as adhesion molecules and transduce signals between the extracellular environment and the intracellular cytoskeletal machinery. β1 integrin subfamily is highly expressed on T lymphocytes and mediates cell spreading, adhesion and coactivation. T lymphocytes have an important role in the regulation and homeostasis of the immune system therefore, the goals of this study were to first to investigate β1 integrin interaction with fibronectin binding protein A (FnbpA), a surface protein expressed on gram-negative bacteria Staphylococcus aureus. Second, characterize the association and function of a non-integrin surface protein, CD98, with β1 integrins on T lymphocytes. ^ FnbpA binds to fibronectin (FN), also a ligand for α5β1 and α4β1 integrins on T lymphocytes. Since both bacterial proteins FnbpA and T cell integrins utilize FN, it was of interest to determine the effects FnbpA on T cell activation. Results demonstrated that recombinant FnbpA (rFnbpA) coimmobilized with OKT3 mediated T cell coactivation in a soluble FN-dependent manner. Integrin α5β1 was identified as the main integrin utilized by Staphylococcus aureus FnbpA from studies using soluble antibodies to inhibit T cell proliferation and parallel plate flow chamber assays. The mechanism of rFnbpA-mediated coactivation was one that used soluble FN as a bridge between rFnbpA and integrin α5β1 on the T lymphocyte. ^ Since integrins are utilized by T lymphocytes and bacterial proteins, it was of interest to identify proteins involved in integrin regulation. Anti-CD98 mAb 80A10 was identified and characterized from a screen to identify surface proteins involved in integrin signaling and functions. CD98 is a non-integrin protein that was sensitive to integrin inhibition in human T lymphocyte aggregation and activation, thus suggested that CD98 shared a common signaling pathway with integrins. These results led to the question of whether CD98 physically associates with β1 integrins. Fluorescence microscopy and biochemical analysis determined that CD98 is specifically associated with β1 integrin on human T lymphocytes and may be part of a larger multimolecular signaling complex. ^
Resumo:
Lipid rafts are small laterally mobile cell membrane structures that are highly enriched in lymphocyte signaling molecules. Lipid rafts can form from the assembly of specialized lipids and proteins through hydrophobic associations from saturated acyl chains. GM1 gangliosides are a common lipid raft component and have been shown to be essential in many T cell functions. Current lipid raft theory hypothesizes that certain aspects of T cell signaling can be initiated from the coalescence of these signaling-enriched lipid rafts to sites of receptor engagement. We have described how the specific aggregation of GM1 lipid rafts can cause a reorganization of cell surface molecular associations which include dynamic associations of β1 integrins with GM1 lipid rafts. These associations had pronounced effects on T cell adhesive and migratory states. We show that GM1 lipid raft aggregation can dramatically inhibit T cell migration and chemotaxis on the extracellular matrix constituent fibronectin. This inhibition of migration function was shown to be dependent on the src kinase Lck and PKC-regulated F-actin polymerization to extending pseudopods. Furthermore, GM1 lipid raft clustering could activate T cell adhesion-strengthening mechanisms. These include an increase in cellular rigidity, the creation of polymerized cortical F-actin structures, the induction of high affinity integrin states, an increase in surface area and symmetry of the contact plane, and resistance to shear flow detachment while adherent to fibronectin. This indicates that GM1 lipid raft aggregation defines a novel stimulus to regulate lymphocyte motility and cellular adhesion which could have important implications in T cell homing mechanisms. ^
Resumo:
MEKK3, a member of the MAP3K family, is involved in regulating multiple MAPK and NF-κB pathways. The MAPK and NF-κB signaling pathways are important in regulating T cell functions. MEKK3 is expressed through the development of T cell and also in subsets of T cell in the peripheral. However, the specific role of MEKK3 in T cell function is unknown. To reveal the in vivo function of MEKK3 in T cells, I have generated MEKK3 T cell conditional knock-out mice. Despite a normal thymus development in the conditional knock-out mice, I observed a decrease in the number of peripheral T-cells and impaired T-cell function in response to antigen stimulation. T cells undergo homeostatic proliferation under lymphopenia condition, a process called lymphopenia-induced proliferation (LIP). Using a LIP model, I demonstrated that the reduction of peripheral T cell number is largely due to a severe impairment of the self-antigen/MHC mediated T cell homeostasis. Upon anti-CD3 stimulation, the proliferation of MEKK3-deficient T cell is not significantly affected, but the production of IFNγ by naïve and effector CD4 T cells are markedly decreased. Interestingly, the IL-12/IL-18 driven IFNγ production and MAPK activation in MEKK3-deficient T cells is not affected, suggesting that MEKK3 selectively mediates the TCR induced MAPK signaling. Furthermore, I found that MEKK3 is activated by TCR stimulation in a RAC1/2 dependent manner, but not by IL-12/IL-18 stimulation. Finally, I showed that basal level of ERK and JNK activation is defective under LIP condition. I showed that the TCR induced ERK, JNK and p38 MAPK activation is also defective in MEKK3 deficient CD4 T cells. Taken together, my data demonstrate a crucial role of MEKK3 in T cell homeostasis and IFNγ production through regulating the TCR mediated MAPK pathway. ^
Resumo:
Role of Neurogranin in the regulation of calcium binding to Calmodulin Anuja Chandrasekar, B.S Advisor: M. Neal Waxham, Ph.D The overall goal of my project was to gain a quantitative understanding of how the interaction between two proteins neurogranin (RC3) and calmodulin (CaM) alters a fundamental property of CaM. CaM, has been extensively studied for more than four decades due to its seminal role in almost all biological functions as a calcium signal transducer. Calcium signals in cardiac and neuronal cells are exquisitely precise and enable activation of some processes while down-regulating others. CaM, with its four calcium binding sites, serves as a central component of calcium signaling in these cells. It is aided in this role as a regulatory hub that differentially activates targets in response to a calcium flux by proteins that alter its calcium binding properties. Neurogranin, also known as RC3, is a member of a family of small neuronal IQ (SNIQ) domain proteins that was originally thought to play a ‘capacitive’ role by sequestering CaM until a calcium influx of sufficient intensity arrived. However, based on earlier work in our lab on neurogranin, we believe that this protein plays a more nuanced role in neurons than simply acting as a CaM buffer. We believe that neurogranin is one of the proteins which, by altering the kinetics of calcium binding allow CaM to decode a variety of signals with fine precision. To quantify the interaction between CaM, neurogranin and calcium, I used biophysical techniques and computational simulations. From my results, I conclude that neurogranin finely regulates the proportion of calcium-saturated CaM and thereby directs CaM’s target specificity.
Resumo:
The mean residence time of 234Th associated with suspended matter in the Kara Sea was calculated from distributions of dissolved and suspended 234Th. Integral particulate fluxes at different levels were estimated for two stations. The flux increases only in the pycnocline; below it changes insignificantly. Two maxima of differential fluxes are noted in vertical profiles: in the surface layer where primary production is maximal, and in the interface layer where zooplankton realizing active transport of suspended matter is usually concentrated. Differential fluxes were determined at 10 stations; their space distribution is controlled by primary production, which depends usually on turbidity of river water in estuaries.
Resumo:
In this pilot study, we report on levels of persistent organohalogenated contaminants (OHCs) in hair of polar bears (Ursus maritimus) from East Greenland sampled between 1999 and 2001. To our knowledge, this is the first study on the validation of polar bear hair as a non-invasive matrix representative of concentrations and profiles in internal organs and blood plasma. Because of low sample weights (13-140 mg), only major bioaccumulative OHCs were detected above the limit of quantification: five polychlorinated biphenyl (PCB) congeners (CB 99, 138, 153, 170 and 180), one polybrominated diphenyl ether (PBDE) congener (BDE 47), oxychlordane, trans-nonachlor and ß-hexachlorocyclohexane. The PCB profile in hair was similar to that of internal tissues (i.e. adipose, liver, brain and blood), with CB 153 and 180 as the major congeners in all matrices. A gender difference was found for concentrations in hair relative to concentrations in internal tissues. Females (n = 6) were found to display negative correlations, while males (n = 5) showed positive correlations, although p-values were not found significant. These negative correlations in females may reflect seasonal OHC mobilisation from periphery adipose tissue due to, for example, lactation and fasting. The lack of significance in most correlations may be due to small sample sizes and seasonal variability of concentrations in soft tissues. Further research with larger sample weights and sizes is therefore necessary to draw more definitive conclusions on the usefulness of hair for biomonitoring OHCs in polar bears and other fur mammals.
Resumo:
The under-ice habitat and fauna were studied during a typical winter situation at three stations in the western Barents Sea. Dense pack ice (7-10/10) prevailed and ice thickness ranged over <0.1-1.6 m covered by <0.1-0.6 m of snow. Air temperatures ranged between -1.8 and -27.5°C. The ice undersides were level, white and smooth. Temperature and salinity profiles in the under-ice water (0-5 m depth) were not stratified (T=-1.9 to -2.0°C and S=34.2-34.7). Concentrations of inorganic nutrients were high and concentrations of algal pigments were very low (0.02 µg chlorophyll a/l), indicating the state of biological winter. Contents of particulate organic carbon and nitrogen ranged over 84.2-241.3 and 5.3-16.4 µg/l, respectively, the C/N ratio over 11.2-15.5 pointing to the dominance of detritus in the under-ice water. Abundances of amphipods at the ice underside were lower than in other seasons: 0-1.8 ind/m**2 for Apherusa glacialis, 0-0.7 ind/m**2 for Onisimus spp., and 0-0.8 ind/m**2 for Gammarus wilkitzkii. A total of 22 metazoan taxa were found in the under-ice water, with copepods as the most diverse and numerous group. Total abundances ranged over 181-2,487 ind/m**3 (biomass: 70-2,439 µg C/m**3), showing lower values than in spring, summer and autumn. The dominant species was the calanoid copepod Pseudocalanus minutus (34-1,485 ind/m**3), contributing 19-65% to total abundances, followed by copepod nauplii (85-548 ind/m**3) and the cyclopoid copepod Oithona similis (44-262 ind/m**3). Sympagic (ice-associated) organisms occurred only rarely in the under-ice water layer.
Resumo:
This paper presents the application of the Integral Masonry System (IMS) to the construction of earthquake resistant houses and its experimental study. To verify the security of this new type of building in seismic areas of the third world two prototypes have been tested, one with adobe and the other with hollow brick. In both cases it’s a two-story 6x6x6 m3 house built to scale 1/2. The tests are carried out at the Laboratory of Antiseismic Structures of the Department of Engineering, Pontifical Catholic University of Peru in Lima, in collaboration with the UPM (Technical University of Madrid). This article shows the design process of the prototypes to test, including the sizing of the reinforcements, the characteristics of the tests and the results obtained. These results show that the IMS with adobe or brick remains stable with no significant cracks faced with a severe earthquake, with an estimated acceleration of 1.8 g. Este artículo presenta una aplicación del Sistema de Albañilería Integral (SAI) a la construcción de viviendas sismorresistentes y su estudio experimental. Para verificar su seguridad para su construcción en zonas sísmicas del tercer mundo se han ensayado dos prototipos, uno con adobe, y otro con ladrillo hueco. Se trata de una vivienda de 6x6x6 m3 y dos plantas que se construyen a escala 1/2. Los ensayos se realizaron en el Laboratorio de Estructuras Antisísmicas del Departamento de Ingeniería de la Pontificia Católica Universidad del Perú (PUCP) de Lima en colaboración con la UPM (Universidad Politécnica de Madrid). Este artículo muestra el proceso de diseño de los prototipos a ensayar, incluido el dimensionado de los refuerzos, las características de los ensayos y los resultados obtenidos. Estos resultados muestran que el SAI con adobe o ladrillo permanece estable sin grietas significativas ante un sismo severo, con una aceleración estimada de 1,8 g.
Resumo:
A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.
Resumo:
The aim of inertial confinement fusion is the production of energy by the fusion of thermonuclear fuel (deuterium-tritium) enclosed in a spherical target due to its implosion. In the direct-drive approach, the energy needed to spark fusion reactions is delivered by the irradiation of laser beams that leads to the ablation of the outer shell of the target (the so-called ablator). As a reaction to this ablation process, the target is accelerated inwards, and, provided that this implosion is sufficiently strong a symmetric, the requirements of temperature and pressure in the center of the target are achieved leading to the ignition of the target (fusion). One of the obstacles capable to prevent appropriate target implosions takes place in the ablation region where any perturbation can grow even causing the ablator shell break, due to the ablative Rayleigh-Taylor instability. The ablative Rayleigh-Taylor instability has been extensively studied throughout the last 40 years in the case where the density/temperature profiles in the ablation region present a single front (the ablation front). Single ablation fronts appear when the ablator material has a low atomic number (deuterium/tritium ice, plastic). In this case, the main mechanism of energy transport from the laser energy absorption region (low density plasma) to the ablation region is the electron thermal conduction. However, recently, the use of materials with a moderate atomic number (silica, doped plastic) as ablators, with the aim of reducing the target pre-heating caused by suprathermal electrons generated by the laser-plasma interaction, has demonstrated an ablation region composed of two ablation fronts. This fact appears due to increasing importance of radiative effects in the energy transport. The linear theory describing the Rayleigh-Taylor instability for single ablation fronts cannot be applied for the stability analysis of double ablation front structures. Therefore, the aim of this thesis is to develop, for the first time, a linear stability theory for this type of hydrodynamic structures.
Advances in the modeling, characterization and reliability of concentrator multijunction solar cells
Resumo:
Los sistemas de concentración fotovoltaica (CPV) parecen ser una de las vías más prometedoras para generar electricidad a gran escala a precios competitivos. La investigación actual se centra en aumentar la eficiencia y la concentración de los sistemas para abaratar costes. Al mismo tiempo se investiga sobre la fiabilidad de los diferentes componentes que integran un sistema de concentración, ya que para que los sistemas de concentración sean competitivos es necesario que tengan una fiabilidad al menos similar a los sistemas basados en células de silicio. En la presente tesis doctoral se ha llevado a cabo el estudio de aspectos avanzados de células solares multi-unión diseñadas para trabajar a concentraciones ultra-altas. Para ello, se ha desarrollado un modelo circuital tridimensional distribuido con el que simular el comportamiento de las células solares triple-unión bajo distintas condiciones de funcionamiento, así mismo se ha realizado una caracterización avanzada de este tipo de células para comprender mejor su modo de operación y así poder contribuir a mejorar su eficiencia. Finalmente, se han llevado a cabo ensayos de vida acelerados en células multiunión comerciales para conocer la fiabilidad de este tipo de células solares. Para la simulación de células solares triple-unión se ha desarrollado en la presente tesis doctoral un modelo circuital tridimensinal distribuido el cuál integra una descripción completa de la unión túnel. De este modo, con el modelo desarrollado, hemos podido simular perfiles de luz sobre la célula solar que hacen que la densidad de corriente fotogenerada sea mayor a la densidad de corriente pico de la unión túnel. El modelo desarrollado también contempla la distribución lateral de corriente en las capas semiconductoras que componen y rodean la unión túnel. Por tanto, se ha podido simular y analizar el efecto que tiene sobre el funcionamiento de la célula solar que los concentradores ópticos produzcan perfiles de luz desuniformes, tanto en nivel de irradiancia como en el contenido espectral de la luz (aberración cromática). Con el objetivo de determinar cuáles son los mecanismos de recombinación que están limitando el funcionamiento de cada subcélula que integra una triple-unión, y así intentar reducirlos, se ha llevado a cabo la caracterización eléctrica de células solares monouni ón idénticas a las subcelulas de una triple-unión. También se ha determinado la curva corriente-tensión en oscuridad de las subcélulas de GaInP y GaAs de una célula dobleunión mediante la utilización de un teorema de reciprocidad electro-óptico. Finalmente, se ha analizado el impacto de los diferentes mecanismos de recombinación en el funcionamiento de la célula solar triple-unión en concentración. Por último, para determinar la fiabilidad de este tipo de células, se ha llevado a cabo un ensayo de vida acelerada en temperatura en células solares triple-unión comerciales. En la presente tesis doctoral se describe el diseño del ensayo, el progreso del mismo y los datos obtenidos tras el análisis de los resultados preliminares. Abstract Concentrator photovoltaic systems (CPV) seem to be one of the most promising ways to generate electricity at competitive prices. Nowadays, the research is focused on increasing the efficiency and the concentration of the systems in order to reduce costs. At the same time, another important area of research is the study of the reliability of the different components which make up a CPV system. In fact, in order for a CPV to be cost-effective, it should have a warranty at least similar to that of the systems based on Si solar cells. In the present thesis, we will study in depth the behavior of multijunction solar cells under ultra-high concentration. With this purpose in mind, a three-dimensional circuital distributed model which is able to simulate the behavior of triple-junction solar cells under different working conditions has been developed. Also, an advanced characterization of these solar cells has been carried out in order to better understand their behavior and thus contribute to improving efficiency. Finally, accelerated life tests have been carried out on commercial lattice-matched triple-junction solar cells in order to determine their reliability. In order to simulate triple-junction solar cells, a 3D circuital distributed model which integrates a full description of the tunnel junction has been developed. We have analyzed the behavior of the multijunction solar cell under light profiles which cause the current density photo-generated in the solar cell to be higher than the tunnel junction’s peak current density. The advanced model developed also takes into account the lateral current spreading through the semiconductor layers which constitute and surround the tunnel junction. Therefore, the effects of non-uniform light profiles, in both irradiance and the spectral content produced by the concentrators on the solar cell, have been simulated and analyzed. In order to determine which recombination mechanisms are limiting the behavior of each subcell in a triple-junction stack, and to try to reduce them when possible, an electrical characterization of single-junction solar cells that resemble the subcells in a triplejunction stack has been carried out. Also, the dark I-V curves of the GaInP and GaAs subcells in a dual-junction solar cell have been determined by using an electro-optical reciprocity theorem. Finally, the impact of the different recombination mechanisms on the behavior of the triple-junction solar cell under concentration has been analyzed. In order to determine the reliability of these solar cells, a temperature accelerated life test has been carried out on commercial triple-junction solar cells. In the present thesis, the design and the evolution of the test, as well as the data obtained from the analysis of the preliminary results, are presented.
Resumo:
Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon bottom cell seem to be attractive candidates to materialize the long sought-for integration of III?V materials on silicon for photovoltaic applications. When manufacturing a multi-junction solar cell on silicon, one of the first processes to be addressed is the development of the bottom subcell and, in particular, the formation of its emitter. In this study, we analyze, both experimentally and by simulations, the formation of the emitter as a result of phosphorus diffusion that takes place during the first stages of the epitaxial growth of the solar cell. Different conditions for the Metal-Organic Vapor Phase Epitaxy (MOVPE) process have been evaluated to understand the impact of each parameter, namely, temperature, phosphine partial pressure, time exposure and memory effects in the final diffusion profiles obtained. A model based on SSupremIV process simulator has been developed and validated against experimental profiles measured by ECV and SIMS to calculate P diffusion profiles in silicon formed in a MOVPE environment taking in consideration all these factors.
Resumo:
The paths towards high efficiency multijunction solar cells operating inside real concentrators at ultra high concentration (>1000 suns) are described. The key addressed factors comprehend: 1) the development of an optimized tunnel junction with a high peak current density (240 A/cm2) to mitigate the non-uniform light profiles created by concentrators, 2) the inclusion of highly conductive semiconductor lateral layers to minimize the effects of the non-uniform light profiles in general, and the chromatic aberration in particular; and 3) an adequate design of reliability studies to test multijunction solar cells for real operation conditions in order to determine the fragile parts in the device and improve them. These challenges are faced by means of experimental and theoretical investigation using a quasi-3D distributed circuital model.
Resumo:
The characteristics of optical bistability in a vertical- cavity semiconductor optical amplifier (VCSOA) operated in reflection are reported. The dependences of the optical bistability in VCSOAs on the initial phase detuning and on the applied bias current are analyzed. The optical bistability is also studied for different numbers of superimposed periods in the top distributed bragg reflector (DBR) that conform the internal cavity of the device. The appearance of the X-bistable and the clockwise bistable loops is predicted theoretically in a VCSOA operated in reflection for the first time, to the best of our knowledge. Moreover, it is also predicted that the control of the VCSOA’s top reflectivity by the addition of new superimposed periods in its top DBR reduces by one order of magnitude the input power needed for the assessment of the X- and the clockwise bistable loop, compared to that required in in-plane semiconductor optical amplifiers. These results, added to the ease of fabricating two-dimensional arrays of this kind of device could be useful for the development of new optical logic or optical signal regeneration devices.