847 resultados para Radio frequency modulation.
Exploring civil servant resistance to M-government:a story of transition and opportunities in Turkey
Resumo:
The concept of mobility, related to technology in particular, has evolved dramatically over the last two decades including: (i) hardware ranging from walkmans to Ipods, laptops to netbooks, PDAs to 3G mobile phone; (ii) software supporting multiple audio and video formats driven by ubiquitous mobile wireless access, WiMax, automations such as radio frequency ID tracking and location aware services. Against the background of increasing budget deficit, along with the imperative for efficiency gains, leveraging ICT and mobility promises for work related tasks, in a public administration context, in emerging markets, point to multiple possible paths. M-government transition involve both technological changes and adoption to deliver government services differently (e.g. 24/7, error free, anywhere to the same standards) but also the design of digital strategies including possibly competing m-government models, the re-shaping of cultural practices, the creation of m-policies and legislations, the structuring of m-services architecture, and progress regarding m-governance. While many emerging countries are already offering e-government services and are gearing-up for further m-government activities, little is actually known about the resistance that is encountered, as a reflection of civil servants' current standing, before any further macro-strategies are deployed. Drawing on the resistance and mobility literature, this chapter investigates how civil servants' behaviors, in an emerging country technological environment, through their everyday practice, react and resist the influence of m-government transition. The findings points to four main type of resistance namely: i) functional resistance; ii) ideological resistance; iii) market driven resistance and iv) geographical resistance. Policy implication are discussed in the specific context of emerging markets. © 2011, IGI Global.
Resumo:
The future broadband information network will undoubtedly integrate the mobility and flexibility of wireless access systems with the huge bandwidth capacity of photonics solutions to enable a communication system capable of handling the anticipated demand for interactive services. Towards wide coverage and low cost implementations of such broadband wireless photonics communication networks, various aspects of the enabling technologies are continuingly generating intense research interest. Among the core technologies, the optical generation and distribution of radio frequency signals over fibres, and the fibre optic signal processing of optical and radio frequency signals, have been the subjects for study in this thesis. Based on the intrinsic properties of single-mode optical fibres, and in conjunction with the concepts of optical fibre delay line filters and fibre Bragg gratings, a number of novel fibre-based devices, potentially suitable for applications in the future wireless photonics communication systems, have been realised. Special single-mode fibres, namely, the high birefringence (Hi-Bi) fibre and the Er/Yb doped fibre have been employed so as to exploit their merits to achieve practical and cost-effective all-fibre architectures. A number of fibre-based complex signal processors for optical and radio frequencies using novel Hi-Bi fibre delay line filter architectures have been illustrated. In particular, operations such as multichannel flattop bandpass filtering, simultaneous complementary outputs and bidirectional nonreciprocal wavelength interleaving, have been demonstrated. The proposed configurations featured greatly reduced environmental sensitivity typical of coherent fibre delay line filter schemes, reconfigurable transfer functions, negligible chromatic dispersions, and ease of implementation, not easily achievable based on other techniques. A number of unique fibre grating devices for signal filtering and fibre laser applications have been realised. The concept of the superimposed fibre Bragg gratings has been extended to non-uniform grating structures and into Hi-Bi fibres to achieve highly useful grating devices such as overwritten phase-shifted fibre grating structure and widely/narrowly spaced polarization-discriminating filters that are not limited by the intrinsic fibre properties. In terms of the-fibre-based optical millimetre wave transmitters, unique approaches based on fibre laser configurations have been proposed and demonstrated. The ability of the dual-mode distributed feedback (DFB) fibre lasers to generate high spectral purity, narrow linewidth heterodyne signals without complex feedback mechanisms has been illustrated. A novel co-located dual DFB fibre laser configuration, based on the proposed superimposed phase-shifted fibre grating structure, has been further realised with highly desired operation characteristics without the need for costly high frequency synthesizers and complex feedback controls. Lastly, a novel cavity mode condition monitoring and optimisation scheme for short length, linear-cavity fibre lasers has been proposed and achieved. Based on the concept and simplicity of the superimposed fibre laser cavities structure, in conjunction with feedback controls, enhanced output performances from the fibre lasers have been achieved. The importance of such cavity mode assessment and feedback control for optimised fibre laser output performance has been illustrated.
Resumo:
We describe a frequency-modulation technique that is applicable to two-beam interferometric systems illuminated by semiconductor diode lasers. The technique permits a determination of the optical path difference between the two arms of the interferometer and is used here to extend the range of a fiber polarimetric strain sensor by determining the order of the particular polarimetric fringe under consideration.
Resumo:
This paper aims to discuss the recent literature on Radio Frequency Identification (RFID) and reverse logistics (RL). Particular attention is applied to the bullwhip effect and its increase as RL activities are integrated into the supply chain. RFID is investigated as a tool to assist with integrating reverse and forward logistics into a seamless supply chain and reduce the bullwhip effect. However, further research is required within this area and in particular the return on investment for RFID-enabled integrated systems.
Resumo:
We analyze the physical mechanisms limiting optical fiber resonator length and report on the longest ever laser cavity, reaching 270 km, which shows a clearly resolvable mode structure with a width of ~120??Hz and peak separation of ~380Hz in the radio-frequency spectrum.
Resumo:
This paper aims to explore the application of Radio Frequency Identification (RFID) to Returnable transit equipment (RTE) in the supply chain. Particular attention is applied to the current structures of RTE networks as formulated by RTE providers. The problems related to RTE usage are described and the effect to the network analyzed. RFID is investigated as a tool to assist with the movement of the RTE both from the client’s and RTE provider’s point of view.
Resumo:
In recent years the increased interest in introducing radio frequency technology (RFID) in warehousing was observed. First adopters of RFID reported numerous benefits, which included: reduced shrinkage, real-time tracking and better accuracy of data collection. Along with the academic and industrial discussion on benefits which can be achieved in RFID enabled warehouses there are reports on issues related to adoption of RFID technology in warehousing. This paper reviews results of scientific reports of RFID implementation in warehouses and discusses the adoption barriers and causes of not achieving full potential of the technology. Following adoption barriers are identified and set in warehousing context: lack of forseeable return on investment (ROI), unreliable performance of RFID systems, standarisation, integration with legacy systems and privacy/security concerns. As more studies will address these challenges, the realisation of RFID benefits for warehouses will become reality.
Resumo:
In recent years the applications of radio frequency identification technology (RFID) in warehousing have gained a great amount of attention as it is a challenging and dynamic environment. Analysing a receiving operation of third party logistic (3PL) operator running a tyre distribution centre, this paper presents a case study of RFID application in the warehouse. The receiving process is enhanced with the RFID technology, which provides contactless identification, less manual data entry errors, instant stock management. Moreover, these benefits could be maximised by the proposed use of the RFID generated data in accounting of costs and services, which is a novel application of the RFID technology.
Resumo:
Adults show great variation in their auditory skills, such as being able to discriminate between foreign speech-sounds. Previous research has demonstrated that structural features of auditory cortex can predict auditory abilities; here we are interested in the maturation of 2-Hz frequency-modulation (FM) detection, a task thought to tap into mechanisms underlying language abilities. We hypothesized that an individual's FM threshold will correlate with gray-matter density in left Heschl's gyrus, and that this function-structure relationship will change through adolescence. To test this hypothesis, we collected anatomical magnetic resonance imaging data from participants who were tested and scanned at three time points: at 10, 11.5 and 13 years of age. Participants judged which of two tones contained FM; the modulation depth was adjusted using an adaptive staircase procedure and their threshold was calculated based on the geometric mean of the last eight reversals. Using voxel-based morphometry, we found that FM threshold was significantly correlated with gray-matter density in left Heschl's gyrus at the age of 10 years, but that this correlation weakened with age. While there were no differences between girls and boys at Times 1 and 2, at Time 3 there was a relationship between gray-matter density in left Heschl's gyrus in boys but not in girls. Taken together, our results confirm that the structure of the auditory cortex can predict temporal processing abilities, namely that gray-matter density in left Heschl's gyrus can predict 2-Hz FM detection threshold. This ability is dependent on the processing of sounds changing over time, a skill believed necessary for speech processing. We tested this assumption and found that FM threshold significantly correlated with spelling abilities at Time 1, but that this correlation was found only in boys. This correlation decreased at Time 2, and at Time 3 we found a significant correlation between reading and FM threshold, but again, only in boys. We examined the sex differences in both the imaging and behavioral data taking into account pubertal stages, and found that the correlation between FM threshold and spelling was strongest pre-pubertally, and the correlation between FM threshold and gray-matter density in left Heschl's gyrus was strongest mid-pubertally.
Resumo:
The objective of this paper is to combine the antenna downtilt selection with the cell size selection in order to reduce the overall radio frequency (RF) transmission power in the homogeneous High-Speed Packet Downlink (HSDPA) cellular radio access network (RAN). The analysis is based on the concept of small cells deployment. The energy consumption ratio (ECR) and the energy reduction gain (ERG) of the cellular RAN are calculated for different antenna tilts when the cell size is being reduced for a given user density and service area. The results have shown that a suitable antenna tilt and the RF power setting can achieve an overall energy reduction of up to 82.56%. Equally, our results demonstrate that a small cell deployment can considerably reduce the overall energy consumption of a cellular network.
Resumo:
The mappings from grapheme to phoneme are much less consistent in English than they are for most other languages. Therefore, the differences found between English-speaking dyslexics and controls on sensory measures of temporal processing might be related more to the irregularities of English orthography than to a general deficit affecting reading ability in all languages. However, here we show that poor readers of Norwegian, a language with a relatively regular orthography, are less sensitive than controls to dynamic visual and auditory stimuli. Consistent with results from previous studies of English-readers, detection thresholds for visual motion and auditory frequency modulation (FM) were significantly higher in 19 poor readers of Norwegian compared to 22 control readers of the same age. Over two-thirds (68.4%) of the children identified as poor readers were less sensitive than controls to either or both of the visual coherent motion or auditory 2Hz FM stimuli. © 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Developmental dyslexia is associated with deficits in the processing of basic auditory stimuli. Yet it is unclear how these sensory impairments might contribute to poor reading skills. This study better characterizes the relationship between phonological decoding skills, the lack of which is generally accepted to comprise the core deficit in reading disabilities, and auditory sensitivity to amplitude modulation (AM) and frequency modulation (FM). Thirty-eight adult subjects, 17 of whom had a history of developmental dyslexia, completed a battery, of psychophysical measures of sensitivity to FM and AM at different modulation rates, along with a measure of pseudoword reading accuracy and standardized assessments of literacy and cognitive skills. The subjects with a history of dyslexia were significantly less sensitive than controls to 2-Hz FM and 20-Hz AM only. The absence of a significant group difference for 2-Hz AM shows that the dyslexics do not have a general deficit in detecting all slow modulations. Thresholds for detecting 2-Hz and 240-Hz FM and 20-Hz AM correlated significantly with pseudoword reading accuracy. After accounting for various cognitive skills, however, multiple regression analyses showed that detection thresholds for both 2-Hz FM and 20-Hz AM were significant and independent predictors of pseudoword reading ability in the entire sample. Thresholds for 2-Hz AM and 240-Hz FM did not explain significant additional variance in pseudoword reading skill, it is therefore possible that certain components of auditory processing of modulations are related to phonological decoding skills, whereas others are not.
Resumo:
Radio-frequency identification technology (RFID) is a popular modern technology proven to deliver a range of value-added benefits to achieve system and operational efficiency, as well as cost-effectiveness. The operational characteristics of RFID outperform barcodes in many aspects. Despite its well-perceived benefits, a definite rationale for larger scale adoption is still not so promising. One of the key reasons is high implementation cost, especially the cost of tags for applications involving item-level tagging. This has resulted in the development of chipless RFID tags which cost much less than conventional chip-based tags. Despite the much lower tag cost, the uptake of chipless RFID system in the market is still not as widespread as predicted by RFID experts. This chapter explores the value-added applications of chipless RFID system to promote wider adoption. The chipless technology's technical and operational characteristics, benefits, limitations and current uses will also be examined. The merit of this chapter is to contribute fresh propositions to the promising applications of chipless RFID to increase its adoption in the industries that are currently not (or less popular in) utilising it, such as retail, logistics, manufacturing, healthcare, and service sectors. © 2013, IGI Global.
Resumo:
Radio-frequency identification technology (RFID) is a popular modern technology proven to deliver a range of value-added benefits to achieve system and operational efficiency, as well as cost-effectiveness. The operational characteristics of RFID outperform barcodes in many aspects. One of the main challenges for RFID adoption is proving its ability to improve competitiveness. In this paper, we examine multiple real-world examples where RFID technology has been demonstrated to provide significant benefits to industry competitiveness, and also to enhance human experience in the service sector. This paper will explore and survey existing value-added applications of RFID systems in industry and the service sector, with particular focus on applications in retail, logistics, manufacturing, healthcare, leisure and the public sector. © 2012 AICIT.
Resumo:
Radio Frequency Identification (RFID) has been identified as a crucial technology for the modern 21st century knowledge-based economy. Some businesses have realised benefits of RFID adoption through improvements in operational efficiency, additional cost savings, and opportunities for higher revenues. RFID research in warehousing operations has been less prominent than in other application domains. To investigate how RFID technology has had an impact in warehousing, a comprehensive analysis of research findings available from articles through leading scientific article databases has been conducted. Articles from years 1995 to 2010 have been reviewed and analysed with respect to warehouse operations, RFID application domains, benefits achieved and obstacles encountered. Four discussion topics are presented covering RFID in warehousing focusing on its applications, perceived benefits, obstacles to its adoption and future trends. This is aimed at elucidating the current state of RFID in the warehouse and providing insights for researchers to establish new research agendas and for practitioners to consider and assess the adoption of RFID in warehousing functions. © 2013 Elsevier B.V.