957 resultados para ROS (reactive oxygen species)
Resumo:
Nox1, a homologue of gp91phox, the catalytic moiety of the superoxide (O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document})-generating NADPH oxidase of phagocytes, causes increased O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} generation, increased mitotic rate, cell transformation, and tumorigenicity when expressed in NIH 3T3 fibroblasts. This study explores the role of reactive oxygen species (ROS) in regulating cell growth and transformation by Nox1. H2O2 concentration increased ≈10-fold in Nox1-expressing cells, compared with <2-fold increase in O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document}. When human catalase was expressed in Nox1-expressing cells, H2O2 concentration decreased, and the cells reverted to a normal appearance, the growth rate normalized, and cells no longer produced tumors in athymic mice. A large number of genes, including many related to cell cycle, growth, and cancer (but unrelated to oxidative stress), were expressed in Nox1-expressing cells, and more than 60% of these returned to normal levels on coexpression of catalase. Thus, H2O2 in low concentrations functions as an intracellular signal that triggers a genetic program related to cell growth.
Resumo:
Anticancer agents target various subcellular components and trigger apoptosis in chemosensitive cells. We have recently reported the tumor cell growth inhibitory properties of a mixture of triterpenoid saponins obtained from an Australian desert tree (Leguminosae) Acacia victoriae (Bentham). Here we report the purification of this mixture into two biologically pure components called avicins that contain an acacic acid core with two acyclic monoterpene units connected by a quinovose sugar. We demonstrate that the mixture of triterpenoid saponins and avicins induce apoptosis in the Jurkat human T cell line by affecting the mitochondrial function. Avicin G induced cytochrome c release within 30–120 min in whole cells and within a minute in the cell-free system. Caspase inhibitors DEVD or zVAD-fmk had no effect on cytochrome c release, suggesting the direct action of avicin G on the mitochondria. Activation of caspase-3 and total cleavage of poly(ADP-ribose) polymerase (PARP) occurred between 2 and 6 h posttreatment with avicins by zVAD-fmk. Interestingly, in the treated cells no significant changes in the membrane potential preceded or accompanied cytochrome c release. A small decrease in the generation of reactive oxygen species (ROS) was measured. The study of these evolutionarily ancient compounds may represent an interesting paradigm for the application of chemical ecology and chemical biology to human health.
Resumo:
This review summarizes recent evidence from knock-out mice on the role of reactive oxygen intermediates and reactive nitrogen intermediates (RNI) in mammalian immunity. Reflections on redundancy in immunity help explain an apparent paradox: the phagocyte oxidase and inducible nitric oxide synthase are each nonredundant, and yet also mutually redundant, in host defense. In combination, the contribution of these two enzymes appears to be greater than previously appreciated. The remainder of this review focuses on a relatively new field, the basis of microbial resistance to RNI. Experimental tuberculosis provides an important example of an extended, dynamic balance between host and pathogen in which RNI play a major role. In diseases such as tuberculosis, a molecular understanding of host–pathogen interactions requires characterization of the defenses used by microbes against RNI, analogous to our understanding of defenses against reactive oxygen intermediates. Genetic and biochemical approaches have identified candidates for RNI-resistance genes in Mycobacterium tuberculosis and other pathogens.
Resumo:
In Alzheimer disease (AD) the amyloid beta-peptide (A beta) accumulates in plaques in the brain. A beta can be neurotoxic by a mechanism involving induction of reactive oxygen species (ROS) and elevation of intracellular free calcium levels ([Ca2+]i). In light of evidence for an inflammatory response in the brain in AD and reports of increased levels of tumor necrosis factor (TNF) in AD brain we tested the hypothesis that TNFs affect neuronal vulnerability to A beta. A beta-(25-35) and A beta-(1-40) induced neuronal degeneration in a concentration- and time-dependent manner. Pretreatment of cultures for 24 hr with TNF-beta or TNF-alpha resulted in significant attenuation of A beta-induced neuronal degeneration. Accumulation of peroxides induced in neurons by A beta was significantly attenuated in TNF-pretreated cultures, and TNFs protected neurons against iron toxicity, suggesting that TNFs induce antioxidant pathways. The [Ca2+]i response to glutamate (quantified by fura-2 imaging) was markedly potentiated in neurons exposed to A beta, and this action of A beta was suppressed in cultures pretreated with TNFs. Electrophoretic mobility-shift assays demonstrated an induction of a kappa beta-binding activity in hippocampal cells exposed to TNFs. Exposure of cultures to I kappa B (MAD3) antisense oligonucleotides, a manipulation designed to induce NF-kappa B, mimicked the protection by TNFs. These data suggest that TNFs protect hippocampal neurons against A beta toxicity by suppressing accumulation of ROS and Ca2+ and that kappa B-dependent transcription is sufficient to mediate these effects. A modulatory role for TNF in the neurodegenerative process in AD is proposed.
Resumo:
Tumor necrosis factor (TNF) is selectively cytotoxic to some types of tumor cells in vitro and exerts antitumor activity in vivo. Reactive oxygen intermediates (ROIs) have been implicated in the direct cytotoxic activity of TNF. By using confocal microscopy, flow cytometry, and the ROI-specific probe dihydrorhodamine 123, we directly demonstrate that intracellular ROIs are formed after TNF stimulation. These ROIs are observed exclusively under conditions where cells are sensitive to the cytotoxic activity of TNF, suggesting a direct link between both phenomena. ROI scavengers, such as butylated hydroxyanisole, effectively blocked the formation of free radicals and arrested the cytotoxic response, confirming that the observed ROIs are cytocidal. The mitochondrial glutathione system scavenges the major part of the produced ROIs, an activity that could be blocked by diethyl maleate; under these conditions, TNF-induced ROIs detectable by dihydrorhodamine 123 oxidation were 5- to 20-fold higher.
Resumo:
Objetivou-se avaliar o efeito da suplementação prolongada de grão de soja cru e integral (GSI) como fonte de ácido graxo Ω6 sobre o desempenho produtivo, perfil metabólico, qualidade oocitária e embrionária e função imune de vacas leiteiras no período de transição e início de lactação. Foram selecionadas 44 vacas da raça Holandesa, multíparas e gestantes, com parto previsto para 90 dias após o início da avaliação e fornecimento das dietas experimentais, porém em razão da ocorrência de enfermidades metabólicas ou infecciosas (3 abortos; 3 deslocamentos de abomaso; 3 enfermidades podais; 4 distocias) 13 animais foram retirados do experimento. As vacas foram distribuídas aleatoriamente em quatro grupos experimentais diferindo entre eles o início do fornecimento de grão de soja cru e integral (GSI) durante o pré-parto. A dieta era baseada na inclusão de 12% de GSI %MS, com aproximadamente 5,1% de extrato etéreo (EE) o início de seu fornecimento foi conforme descrito a seguir: Grupo 0: Animais não receberam dieta contendo GSI no pré-parto; Grupo 30: Início do fornecimento de dieta com GSI nos 30 dias finais da gestação; Grupo 60: Início do fornecimento de dieta com GSI nos 60 dias finais da gestação; Grupo 90: Início do fornecimento de dieta com GSI nos 90 dias finais da gestação. Após o parto, todas as vacas receberam dieta única com 5,1% de EE, baseada na inclusão de 12% de GSI %MS até 90 dias de lactação. Os animais foram arraçoados de acordo com o consumo de matéria seca no dia anterior, de forma a ser mantido porcentual de sobras das dietas, diariamente, entre 5 e 10%. As amostras dos alimentos e sobras foram coletadas diariamente e armazenadas a -20ºC. Semanalmente as amostras coletadas diariamente foram misturadas e foi retirada uma amostra composta referente a um período de uma semana, a fim de mensurar o consumo de matéria seca e nutrientes. Amostras de fezes foram coletadas nos dias -56, -21, 21, 56 e 84 dias em relação ao parto, com o propósito de mensurar a digestibilidade da matéria seca e nutrientes. A produção de leite foi mensurada diariamente e para a composição dos teores de gordura, proteína, lactose e perfil de ácidos graxos amostras foram coletadas semanalmente. As amostras de sangue para análise dos metabólitos sanguíneos foram coletadas semanalmente. Amostras de sangue para mensurar a atividade do sistema imune foram coletadas na semanas -8, -4, -2, -1 em relação ao parto, parto, +1, +2, +4 e +8 semanas no período pós-parto. Nos dias 21, 42, 63 e 84 do período pós-parto foram realizadas aspirações foliculares, com posterior fertilização in vitro dos oócitos. Todas as variáveis mensuradas foram analisadas pelo procedimento PROC MIXED do SAS 9.4 através de regressão polinomial, utilizando efeito fixo de tratamento, semana, interação tratamento*semana e efeito de animal dentro de tratamento como aleatório. Utilizou nível de 5% de significância. Foi observado efeito (P<0,05) linear crescente para CEE no pré-parto. Não foi observado diferenças no CMS e nutrientes no pós-parto. Não houve alteração da digestibilidade nos períodos pré e pós-parto. Não houve alteração no balanço de energia e nitrogênio nos periodos pré e pós-parto. Não foi observado diferença na produção, composição e teor dos componentes totais do leite. No perfil de ácidos graxos do leite houve efeito (P<0,05) linear descrescente para as concentrações de C16:1cis, C18:1 cis, total de C:18 insaturado, total de AG monoinsaturados, insaturados e a relação do total de AGS:AGI. Foi observado efeito linear (P<0,05) crescente para o total de AG aturado e efeito (P<0,05) quadrático para C18:2, CLAcis9-trans11, e total de AGPI. Foi observado efeito linear crescente (P<0,05) para colesterol total, LDL no préparto e linear decrescente (P<0,05) para GGT nos períodos pré e pós-parto. Foi observado efeito quadrático (P<0,05) para HDL no pré-parto e AST no pós-parto. Em relação a atividade do sistema imune foi observado efeito linear (P<0,05) crescente para o percentual de CD3+ ativos no pós-parto, para o percentual de monócitos que produziram espécie reativa de oxigênio (ERO) no pós-parto quando foram estimulados por S.aureus e E.coli e para a intensidade de imunofluorescência de ERO para ganulócitos no pós-parto quando estimulados por S.aureus. Foi observado efeito (P<0,05) quadrático para o percentual de granulócitos, mononucleares, CD8+ ativos no pós-parto e para o percentual de granulócitos que produziram ERO no pós-parto quando estimulados por E.coli. A suplementação prolongada com GSI no pré-parto melhora a atividade do sistema imune, não melhora a qualidade oocitária e embrionária bem como não influencia negativamente os parametros produtivos de vacas leiteiras no período de transição e início de lactação
Resumo:
Liver X receptors (LXRs) are ligand-activated transcription factors of the nuclear receptor superfamily. They play important roles in controlling cholesterol homeostasis and as regulators of inflammatory gene expression and innate immunity, by blunting the induction of classical pro-inflammatory genes. However, opposite data have also been reported on the consequences of LXR activation by oxysterols, resulting in the specific production of potent pro-inflammatory cytokines and reactive oxygen species (ROS). The effect of the inflammatory state on the expression of LXRs has not been studied in human cells, and constitutes the main aim of the present work. Our data show that when human neutrophils are triggered with synthetic ligands, the synthesis of LXRα mRNA became activated together with transcription of the LXR target genes ABCA1, ABCG1 and SREBP1c. An inflammatory mediator, 15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2), hindered T0901317-promoted induction of LXRα mRNA expression together with transcription of its target genes in both neutrophils and human macrophages. This down-regulatory effect was dependent on the release of reactive oxygen species elicited by 15dPGJ2, since it was enhanced by pro-oxidant treatment and reversed by antioxidants, and was also mediated by ERK1/2 activation. Present data also support that the 15dPGJ2-induced serine phosphorylation of the LXRα molecule is mediated by ERK1/2. These results allow to postulate that down-regulation of LXR cellular levels by pro-inflammatory stimuli might be involved in the development of different vascular diseases, such as atherosclerosis.
Resumo:
Chitosan permeabilizes plasma membrane and kills sensitive filamentous fungi and yeast. Membrane fluidity and cell energy determine chitosan sensitivity in fungi. A five-fold reduction of both glucose (main carbon (C) source) and nitrogen (N) increased 2-fold Neurospora crassa sensitivity to chitosan. We linked this increase with production of intracellular reactive oxygen species (ROS) and plasma membrane permeabilization. Releasing N. crassa from nutrient limitation reduced chitosan antifungal activity in spite of high ROS intracellular levels. With lactate instead of glucose, C and N limitation increased N. crassa sensitivity to chitosan further (4-fold) than what glucose did. Nutrient limitation also increased sensitivity of filamentous fungi and yeast human pathogens to chitosan. For Fusarium proliferatum, lowering 100-fold C and N content in the growth medium, increased 16-fold chitosan sensitivity. Similar results were found for Candida spp. (including fluconazole resistant strains) and Cryptococcus spp. Severe C and N limitation increased chitosan antifungal activity for all pathogens tested. Chitosan at 100 μg ml-1 was lethal for most fungal human pathogens tested but non-toxic to HEK293 and COS7 mammalian cell lines. Besides, chitosan increased 90% survival of Galleria mellonella larvae infected with C. albicans. These results are of paramount for developing chitosan as antifungal.
Resumo:
Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. We have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding a class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca2+ in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Our results are of paramount importance for developing chitosan as an antifungal.
Resumo:
Le récepteur éboueur CD36 facilite l’internalisation des acides gras libres non estérifiés (AGNE) au niveau des tissus cardiaque et périphériques. Lors d’une ischémie-reperfusion du myocarde (MI/R), les dommages produits sont en partie liés à l’internalisation des AGNE et à la production d’espèces réactives de l’oxygène, contrairement à ce qui est observé chez des souris déficientes en CD36 (CD36-/-). Nous avons émis l’hypothèse selon laquelle le CP-3(iv), un ligand synthétique du récepteur CD36, exercerait un effet cardioprotecteur en réduisant la taille de la zone myocardique infarcie lors d’une ischémie transitoire du myocarde. Nos objectifs étaient 1) de déterminer l’effet cardioprotecteur du CP-3(iv) et 2) de définir son mécanisme. Pour cela, des études in vivo et ex vivo ont été faites. Des souris de type sauvage ont été traitées avec le CP-3(iv) (289 nmol/kg) par voie sous-cutanée pendant 14 jours avant d’être soumises à 30 minutes d’ischémie suivant la ligature de l’artère coronaire gauche descendante et de sa reperfusion pendant une période de 6 ou 48 heures. De plus, des coeurs isolés de souris ont été perfusés 30 minutes, suivi de 40 minutes à faible débit (10%) et de 30 minutes de reperfusion pendant laquelle le coeur est perfusé avec le CP-3(iv) à une concentration de 10-6 M. Nos travaux ont montré que l’effet cardioprotecteur d’un traitement préventif par le CP-3(iv) permet de diminuer la taille de l’infarctus et préserve l’hémodynamie cardiaque de façon dépendante du CD36 puisque cet effet est non visible chez les souris CD36-/-. De plus, le CP-3(iv) exerce non seulement un effet systémique, mais aussi un effet cardioprotecteur direct sur le coeur isolé.
Resumo:
Liver fatty acid binding protein (L-FABP) contains amino acids that are known to possess antioxidant function. In this study, we tested the hypothesis that L-FABP may serve as an effective endogenous cytoprotectant against oxidative stress. Chang liver cells were selected as the experimental model because of their undetectable L-FABP mRNA level. Full-length L-FABP cDNA was subcloned into the mammalian expression vector pcDNA3.1 (pcDNA-FABP). Chang cells were stably transfected with pc-DNA-FABP or vector (pcDNA3.1) alone. Oxidative stress was induced by incubating cells with 400 mu mol/L H2O2 or by subjecting cells to hypoxia/reoxygenation. Total cellular reactive oxygen species (ROS) was determined using the fluorescent probe DCF. Cellular damage induced by hypoxia/reoxygenation was assayed by lactate dehydrogenase (LDH) release. Expression of L-FABP was documented by regular reverse transcription polyrnerase chain reaction (RT-PCR), real-time RT-PCR, and Western blot. The pcDNA-FABP-transfected cells expressed full-length L-FABP mRNA, which was absent from vector-transfected control cells. Western blot showed expression of 14-kd L-FABP protein in pcDNA-FABP-transfected cells, but not in vector-transfected cells. Transfected cells showed decreased DCF fluorescence intensity under oxidative stress (H2O2 and hypoxia/reoxygenation) conditions versus control in inverse proportion to the level of L-FABP expression. Lower LDH release was observed in the higher L-FABP-expressed cells in hypoxia/reoxygenation experiments. In conclusion, we successfully transfected and cloned a Chang liver cell line that expressed the L-FABP gene. The L-FABP-expressing cell line had a reduced intracellular ROS level versus control. This finding implies that L-FABP has a significant role in oxidative stress.
Resumo:
Activated macrophages and osteoclasts express high amounts of tartrate-resistant acid phosphatase (TRACP, acp5). TRACP has a binuclear iron center with a redox-active iron that has been shown to catalyze the formation of reactive oxygen species (ROS) by Fenton's reaction. Previous Studies Suggest that ROS generated by TRACP may participate in degradation of endocytosed bone matrix products in resorbing osteoclasts and degradation of foreign Compounds during. antigen presentation in activated macrophages. Here we have compared free radical production in macrophages of TRACP overexpressing (TRACP +) and wild-type (WT) mice. TRACP overexpression increased both ROS levels and Superoxide production. Nitric oxide production was increased in activated macrophages or WT mice, but not in TRACP+ mice, Macrophages from TRACP+ mice showed increased capacity or bacterial killing. Recombinant TRACP enzyme was capable of bacterial killing in the presence of hydrogen peroxide. These results suggest that TRACP has an important biological function in immune defense systern.
Resumo:
Biomolecules are susceptible to many different post-translational modifications that have important effects on their function and stability, including glycosylation, glycation, phosphorylation and oxidation chemistries. Specific conversion of aspartic acid to its isoaspartyl derivative or arginine to citrulline leads to autoantibody production in models of rheumatoid disease, and ensuing autoantibodies cross-react with native antigens. Autoimmune conditions associate with increased activation of immune effector cells and production of free radical species via NADPH oxidases and nitric oxide synthases. Generation of neo-antigenic determinants by reactive oxygen and nitrogen species ROS and RNS) may contribute to epitope spreading in autoimmunity. The oxidation of amino acids by peroxynitrite, hypochlorous acid and other reactive oxygen species (ROS) increases the antigenicity of DNA, LDL and IgG, generating ligands for which autoantibodies show higher avidity. This review focuses on the evidence for ROS and RNS in promoting the autoimmune responses observed in diseases rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). It considers the evidence for ROS/RNS-induced antigenicity arising as a consequence of failure to remove or repair ROS/RNS damaged biomolecules and suggests that an associated defect, probably in T cell signal processing or/or antigen presentation, is required for the development of disease.
Resumo:
DNA is susceptible to damage by reactive oxygen species (ROS). ROS are produced during normal and pathophysiological processes in addition to ionizing radiation, environmental mutagens, and carcinogens. 8-oxo-2′-deoxyguanosine (8-oxodG) is probably one of the most abundant DNA lesion formed during oxidative stress. This potentially mutagenic lesion causes G → T transversions and is therefore an important candidate lesion for repair, particularly in mammalian cells. Several pathways exist for the removal, or repair, of this lesion from mammalian DNA. The most established is via the base excision repair enzyme, human 8-oxoguanine glycosylase (hOgg1), which acts in combination with the human apurinic endonuclease (hApe). The latter is known to respond to regulation by redox reactions and may act in combination with hOgg1. We discuss evidence in this review article concerning alternative pathways in humans, such as nucleotide excision repair (NER), which could possibly remove the 8-oxodG lesion. We also propose that redox-active components of the diet, such as vitamin C, may promote such repair, affecting NER specifically. © 2002 Elsevier Science Inc.
Resumo:
During inflammation, many cell types release reactive oxygen species (ROS) via the respiratory burst. These ROS are potent oxidants of LDL and its major protein, apolipoprotein B. Whilst native LDL is taken up by endothelial cells via a feedback controlled receptor-regulated process, oxidative modification of LDL renders it a ligand for many scavenger receptors. Scavenger receptors include CD-36, LOX-1 and the prototypic macrophage SR A I/II, all of which are variably expressed. Uncontrolled uptake of oxidised LDL is implicated in the pathogenesis of atherosclerosis. In addition, oxidised LDL increases CCR2 protein and mRNA expression on monocytes, and thus may contribute to monocyte retention and perpetuation in inflammatory, unstable atherosclerotic lesions. However, little data are available on the effects of specific minor modifications to apolipoprotein B. In order to identify the sequence specificity and nature of oxidative modifications which confer altered properties on LDL, we have investigated the effects of modified peptides (which correspond to the putative LDLR binding domain) on LDL uptake by HUVECs and U937 monocytes.