987 resultados para RF simulation
Resumo:
Current methods for molecular simulations of Electric Double Layer Capacitors (EDLC) have both the electrodes and the electrolyte region in a single simulation box. This necessitates simulation of the electrode-electrolyte region interface. Typical capacitors have macroscopic dimensions where the fraction of the molecules at the electrode-electrolyte region interface is very low. Hence, large systems sizes are needed to minimize the electrode-electrolyte region interfacial effects. To overcome these problems, a new technique based on the Gibbs Ensemble is proposed for simulation of an EDLC. In the proposed technique, each electrode is simulated in a separate simulation box. Application of periodic boundary conditions eliminates the interfacial effects. This in addition to the use of constant voltage ensemble allows for a more convenient comparison of simulation results with experimental measurements on typical EDLCs. (C) 2014 AIP Publishing LLC.
Resumo:
Experimental quantum simulation of a Hamiltonian H requires unitary operator decomposition (UOD) of its evolution unitary U = exp(-iHt) in terms of native unitary operators of the experimental system. Here, using a genetic algorithm, we numerically evaluate the most generic UOD (valid over a continuous range of Hamiltonian parameters) of the unitary operator U, termed fidelity-profile optimization. The optimization is obtained by systematically evaluating the functional dependence of experimental unitary operators (such as single-qubit rotations and time-evolution unitaries of the system interactions) to the Hamiltonian (H) parameters. Using this technique, we have solved the experimental unitary decomposition of a controlled-phase gate (for any phase value), the evolution unitary of the Heisenberg XY interaction, and simulation of the Dzyaloshinskii-Moriya (DM) interaction in the presence of the Heisenberg XY interaction. Using these decompositions, we studied the entanglement dynamics of a Bell state in the DM interaction and experimentally verified the entanglement preservation procedure of Hou et al. Ann. Phys. (N.Y.) 327, 292 (2012)] in a nuclear magnetic resonance quantum information processor.
Resumo:
This paper explains the reason behind pull-in time being more than pull-up time of many Radio Frequency Micro-Electro-Mechanical Systems (RF MEMS) switches at actuation voltages comparable to the pull-in voltage. Analytical expressions for pull-in and pull-up time are also presented. Experimental data as well as finite element simulations of electrostatically actuated beams used in RF-MEMS switches show that the pull-in time is generally more than the pull-up time. Pull-in time being more than pull-up time is somewhat counter-intuitive because there is a much larger electrostatic force during pull-in than the restoring mechanical force during the release. We investigated this issue analytically and numerically using a 1D model for various applied voltages and attribute this to energetics, the rate at which the forces change with time, and softening of the overall effective stiffness of the electromechanical system. 3D finite element analysis is also done to support the 1D model-based analyses.
Resumo:
Alumina thin films were deposited on titanium (Ti) and fused quartz by both direct and reactive pulsed rf magnetron sputtering techniques. X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy were utilized to study the phases and surface morphology of the films. The as-deposited alumina thin films were amorphous. However, after annealing at 500 degrees C in vacuum, the crystalline peaks corresponding to the Theta (0), Delta (8) and Chi ()) alumina phases were obtained. The optical transmittance and reflectance as well as IR emittanc,e data were also evaluated for the thin films. The transmittance, e.g., (similar to 90%) of the bare quartz substrate was not changed even when the alumina thin films were deposited for an hour. However, further increase in deposition time (e.g., 7 h) of the alumina thin films showed only a marginal decrease (e.g., similar to 5%) in average transmittance of the bare quartz substrate. The direct and indirect optical band gaps and extinction coefficient of the alumina films were estimated from the transmittance spectra. The IR emittance of the Ti substrate (e.g., similar to 16%) was almost constant after depositing alumina thin films for an hour. Further increase in deposition time showed only a marginal increase (e.g., similar to 9%) in IR emittance value. Therefore, it is proposed that the alumina films developed in the present work can act as a protective cover for the Ti substrate while retaining the thermo-optical properties of the same. The nanohardness and Young's modulus of the alumina thin films were evaluated by the novel nanoindentation technique. The nanohardness was measured as similar to 6 GPa. Further, Young's modulus was evaluated as similar to 116 GPa. The magnitudes of the nanomechanical properties of the thin films were a little smaller than those reported in the literature. This was linked to the lack of crystalline phases in the as-deposited alumina thin films. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Monte Carlo modeling of light transport in multilayered tissue (MCML) is modified to incorporate objects of various shapes (sphere, ellipsoid, cylinder, or cuboid) with a refractive-index mismatched boundary. These geometries would be useful for modeling lymph nodes, tumors, blood vessels, capillaries, bones, the head, and other body parts. Mesh-based Monte Carlo (MMC) has also been used to compare the results from the MCML with embedded objects (MCML-EO). Our simulation assumes a realistic tissue model and can also handle the transmission/reflection at the object-tissue boundary due to the mismatch of the refractive index. Simulation of MCML-EO takes a few seconds, whereas MMC takes nearly an hour for the same geometry and optical properties. Contour plots of fluence distribution from MCML-EO and MMC correlate well. This study assists one to decide on the tool to use for modeling light propagation in biological tissue with objects of regular shapes embedded in it. For irregular inhomogeneity in the model (tissue), MMC has to be used. If the embedded objects (inhomogeneity) are of regular geometry (shapes), then MCML-EO is a better option, as simulations like Raman scattering, fluorescent imaging, and optical coherence tomography are currently possible only with MCML. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
Precise experimental implementation of unitary operators is one of the most important tasks for quantum information processing. Numerical optimization techniques are widely used to find optimized control fields to realize a desired unitary operator. However, finding high-fidelity control pulses to realize an arbitrary unitary operator in larger spin systems is still a difficult task. In this work, we demonstrate that a combination of the GRAPE algorithm, which is a numerical pulse optimization technique, and a unitary operator decomposition algorithm Ajoy et al., Phys. Rev. A 85, 030303 (2012)] can realize unitary operators with high experimental fidelity. This is illustrated by simulating the mirror-inversion propagator of an XY spin chain in a five-spin dipolar coupled nuclear spin system. Further, this simulation has been used to demonstrate the transfer of entangled states from one end of the spin chain to the other end.
Resumo:
A phase field modelling approach is implemented in the present study towards simulation of microstructure evolution during cooling slope semi solid slurry generation process of A380 Aluminium alloy. First, experiments are performed to evaluate the number of seeds required within the simulation domain to simulate near spherical microstructure formation, occurs during cooling slope processing of the melt. Subsequently, microstructure evolution is studied employing a phase field method. Simulations are performed to understand the effect of cooling rate on the slurry microstructure. Encouraging results are obtained from the simulation studies which are validated by experimental observations. The results obtained from mesoscopic phase field simulations are grain size, grain density, degree of sphericity of the evolving primary Al phase and the amount of solid fraction present within the slurry at different time frames. Effect of grain refinement also has been studied with an aim of improving the slurry microstructure further. Insight into the process has been obtained from the numerical findings, which are found to be useful for process control.
Resumo:
In this paper, we present a new multiscale method which is capable of coupling atomistic and continuum domains for high frequency wave propagation analysis. The problem of non-physical wave reflection, which occurs due to the change in system description across the interface between two scales, can be satisfactorily overcome by the proposed method. We propose an efficient spectral domain decomposition of the total fine scale displacement along with a potent macroscale equation in the Laplace domain to eliminate the spurious interfacial reflection. We use Laplace transform based spectral finite element method to model the macroscale, which provides the optimum approximations for required dynamic responses of the outer atoms of the simulated microscale region very accurately. This new method shows excellent agreement between the proposed multiscale model and the full molecular dynamics (MD) results. Numerical experiments of wave propagation in a 1D harmonic lattice, a 1D lattice with Lennard-Jones potential, a 2D square Bravais lattice, and a 2D triangular lattice with microcrack demonstrate the accuracy and the robustness of the method. In addition, under certain conditions, this method can simulate complex dynamics of crystalline solids involving different spatial and/or temporal scales with sufficient accuracy and efficiency. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We propose a simulation-based algorithm for computing the optimal pricing policy for a product under uncertain demand dynamics. We consider a parameterized stochastic differential equation (SDE) model for the uncertain demand dynamics of the product over the planning horizon. In particular, we consider a dynamic model that is an extension of the Bass model. The performance of our algorithm is compared to that of a myopic pricing policy and is shown to give better results. Two significant advantages with our algorithm are as follows: (a) it does not require information on the system model parameters if the SDE system state is known via either a simulation device or real data, and (b) as it works efficiently even for high-dimensional parameters, it uses the efficient smoothed functional gradient estimator.
Resumo:
Single fluid schemes that rely on an interface function for phase identification in multicomponent compressible flows are widely used to study hydrodynamic flow phenomena in several diverse applications. Simulations based on standard numerical implementation of these schemes suffer from an artificial increase in the width of the interface function owing to the numerical dissipation introduced by an upwind discretization of the governing equations. In addition, monotonicity requirements which ensure that the sharp interface function remains bounded at all times necessitate use of low-order accurate discretization strategies. This results in a significant reduction in accuracy along with a loss of intricate flow features. In this paper we develop a nonlinear transformation based interface capturing method which achieves superior accuracy without compromising the simplicity, computational efficiency and robustness of the original flow solver. A nonlinear map from the signed distance function to the sigmoid type interface function is used to effectively couple a standard single fluid shock and interface capturing scheme with a high-order accurate constrained level set reinitialization method in a way that allows for oscillation-free transport of the sharp material interface. Imposition of a maximum principle, which ensures that the multidimensional preconditioned interface capturing method does not produce new maxima or minima even in the extreme events of interface merger or breakup, allows for an explicit determination of the interface thickness in terms of the grid spacing. A narrow band method is formulated in order to localize computations pertinent to the preconditioned interface capturing method. Numerical tests in one dimension reveal a significant improvement in accuracy and convergence; in stark contrast to the conventional scheme, the proposed method retains its accuracy and convergence characteristics in a shifted reference frame. Results from the test cases in two dimensions show that the nonlinear transformation based interface capturing method outperforms both the conventional method and an interface capturing method without nonlinear transformation in resolving intricate flow features such as sheet jetting in the shock-induced cavity collapse. The ability of the proposed method in accounting for the gravitational and surface tension forces besides compressibility is demonstrated through a model fully three-dimensional problem concerning droplet splash and formation of a crownlike feature. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
An organic molecule-o-phenylene diamine (OPD)-is selected as an aldehyde sensing material. It is studied for selectivity to aldehyde vapours both by experiment and simulation. A chemiresistor based sensor for detection of aldehyde vapours is fabricated. An o-phenylene diamine-carbon black composite is used as the sensing element. The amine groups in the OPD would interact with the carbonyl groups of the aldehydes. The selectivity and cross-sensitivity of the OPD-CB sensor to VOCs aldehyde, ketone and alcohol-are studied. The sensor shows good response to aldehydes compared to other VOCs. The higher response for aldehydes is attributed to the interaction of the carbonyl oxygen of aldehydes with-NH2 groups of OPD. The surface morphology of the sensing element is studied by scanning electron microscopy. The OPD-CB sensor is responsive to 10 ppm of formaldehyde. The interaction of the VOCs with the OPD-CB nanocomposite is investigated by molecular dynamics studies. The interaction energies of the analyte with the OPD-CB nanocomposite were calculated. It is observed that the interaction energies for aldehydes are higher than those for other analytes. Thus the OPD-CB sensor shows selectivity to aldehydes. The simulated radial distribution function is calculated for the O-H pair of analyte and OPD which further supports the finding that the amine groups are involved in the interaction. These results suggest that it is important and easy to identify appropriate sensing materials based on the understanding of analyte interaction properties.
Resumo:
The present study simulates a two-stage silica gel + water adsorption desalination (AD) and chiller system. The adsorber system thermally compresses the low pressure steam generated in the evaporator to the condenser pressure in two stages. Unlike a standalone adsorption chiller unit which operates in a closed cycle the present system is an open cycle wherein the condensed desalinated water is not fed back to the evaporator. The mathematical relations formulated in the current study are based on conservation of mass and energy along with isotherm relation and kinetics for RD-type silica gel + water pair. Various constitutive relations for each component namely the evaporator, adsorber and condenser are integrated in the model. The dynamics of heat exchanger are modeled using LMTD method, and LDF model is used to predict the dynamic characteristic of the adsorber bed. The system performance indicators namely, specific cooling capacity (SCC), specific daily water production (SDWP) and coefficient of performance (COP) are used as objective functions to optimize the system. The novelty of the present work is in introduction of inter-stage pressure as a new parameter for optimizing the two-stage operation of AD chiller system. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We present a new Hessian estimator based on the simultaneous perturbation procedure, that requires three system simulations regardless of the parameter dimension. We then present two Newton-based simulation optimization algorithms that incorporate this Hessian estimator. The two algorithms differ primarily in the manner in which the Hessian estimate is used. Both our algorithms do not compute the inverse Hessian explicitly, thereby saving on computational effort. While our first algorithm directly obtains the product of the inverse Hessian with the gradient of the objective, our second algorithm makes use of the Sherman-Morrison matrix inversion lemma to recursively estimate the inverse Hessian. We provide proofs of convergence for both our algorithms. Next, we consider an interesting application of our algorithms on a problem of road traffic control. Our algorithms are seen to exhibit better performance than two Newton algorithms from a recent prior work.
Resumo:
The work presented in this paper involves the stochastic finite element analysis of composite-epoxy adhesive lap joints using Monte Carlo simulation. A set of composite adhesive lap joints were prepared and loaded till failure to obtain their strength. The peel and shear strain in the bond line region at different levels of load were obtained using digital image correlation (DIC). The corresponding stresses were computed assuming a plane strain condition. The finite element model was verified by comparing the numerical and experimental stresses. The stresses exhibited a similar behavior and a good correlation was obtained. Further, the finite element model was used to perform the stochastic analysis using Monte Carlo simulation. The parameters influencing stress distribution were provided as a random input variable and the resulting probabilistic variation of maximum peel and shear stresses were studied. It was found that the adhesive modulus and bond line thickness had significant influence on the maximum stress variation. While the adherend thickness had a major influence, the effect of variation in longitudinal and shear modulus on the stresses was found to be little. (C) 2014 Elsevier Ltd. All rights reserved.