972 resultados para REUSABLE CATALYST
Resumo:
In this work synthetic niobia was used to promote the oxidation of methylene blue dye in aqueous medium. The niobia was characterized by N2 adsorption/desorption, XRD and TG measurements. The presence of reactive species on the niobia surface strongly increased the oxidation rate of the methylene blue dye. The reaction mechanism was studied by ESI-MS suggesting that the oxidation of the organic dye involve oxidizing species generated mainly after previous treatment with H2O2. It can be observed that the catalyst is a good material in the activation of gas (atmospheric oxygen) or liquid (hydrogen peroxide) oxidant agent with a total discoloration of the dye solution after only 1 h of reaction.
Resumo:
Offretite T zeolite was synthesized using different source of Si (Ludox AS-30, Ludox LS-30 and Aerosil 200 Degussa). The obtained materials were characterized by different complementary techniques: XRD, textural analysis by N2 adsorption, IV, SEM and chemistry analysis. This zeolite has an intermediary structure between offretite and erionite zeolites. In all experiments offretite T phase was obtained. Offretite phase presenting better crystalility are obtained in synthesis with stirring and employing aerosil as silicon source. This zeolite presents a potencial application as catalyst for hydroisodewaxing process.
Resumo:
A laboratory experiment that enables the professor to introduce the problematic of sustainable development in pharmaceutical chemistry to undergraduate students is proposed, using a simple synthetic procedure. Cholesteryl acetate is prepared by the esterification of cholesterol using Montmorillonite K10 as heterogeneous catalyst. Cholesterol and cholesteryl acetate are characterized by spectroscopic (¹H RMN, 13C RMN, FTIR) and thermal analysis techniques. The thermal methods are used to introduce the concepts of polymorphism and the nature of mesophases.
Resumo:
Isoamyl butyrate production was investigated using free and immobilized lipases by esterification of butyric acid with isoamyl alcohol in a solvent-free system and in an organic media. Among the enzymes studied, Lipozyme TL IM was found to be the most active catalyst in n-hexane as a solvent. The effects of different solvents and the amount of water added on conversion rates were studied. A maximum conversion yield of 80% in n-hexano at 48 h was obtained under the following conditions: 3 g L-1 of Lipozyme TL IM, 30 ºC, 180 rpm of agitation, isoamyl alcohol to butyric acid molar ratio of 1:1 and acid substrate concentration of 0.06 M.
Resumo:
The catalytic performance of Mg,Al-mixed oxides (MO20, MO25 and MO33) derived from hydrotalcites was evaluated in the Knoevenagel reaction between benzaldehyde and phenylsulfonylacetonitrile at 373 and 383 K. The best results were obtained for the sample MO20 that presented the highest basic sites density and external area and the smallest crystallite sizes. The relative amount of basic sites with weak to intermediate strength also played an important role on catalytic performance. By increasing the catalyst content from 1 to 5 wt.% at 383 K, a complete conversion of the reactants is attained, producing α-phenylsulfonylcinnamonitrile with a selectivity of 100%.
Resumo:
A series of Group VIII metal catalysts was obtained for the semi-hydrogenation of styrene. Catalysts were characterized by Hydrogen Chemisorption, TPR and XPS. Palladium, rhodium and platinum low metal loading prepared catalysts presented high activity and selectivity (ca. 98%) during the semi-hydrogenation of styrene, being palladium the most active catalyst. The ruthenium catalyst also presented high selectivity (ca. 98%), but the lowest activity. For the palladium catalyst, the influence of the precursor salt and of the reduction temperature on the activity and selectivity were studied. The following activity series was obtained: PdN-423 > PdCl-673 > PdCl-373> PtCl-673 > RhCl-673 >> RuCl-673. As determined by XPS, differences in activity could be attributed, at least in part, to electronic effects.
Resumo:
The synthesis of fine chemicals intermediates using Friedel-Crafts acylation is one of the most important methods in chemical technology. In this work, the acylation of 2-methoxynaphthalene with acetic anhydride using a silica-supported dodecatungstophosphoric acid catalyst (HPW/SiO2) and acetonitrila as solvent was studied, showing that this reaction is a feasible alternative to produce intermediaries to replace the current methods of production. The reactions using acetonitrile solvent showed yields greater than or equal to the reactions using traditional solvents such as nitrobenzene and dichloroethane. Finally, the modified Eley-Rideal mechanism was proposed to elucidate the experimental data obtained.
Resumo:
WO3-ZrO2 catalysts promoted with Pt and Pd were tested as paraffin isomerization catalysts using n-hexane as model compound. Sulfur and amine poisoning and regeneration tests were used to assess the impact of the addition of Pt and Pd on the deactivation resistance and regenerability. Pt and PtPd catalysts were the most active for n-hexane isomerization. The low activity of the Pd catalyst was attributed to poor Pd metal properties when supported over WO3-ZrO2 and to a decrease of the number of BrQnsted acid sites. PtPd was the only catalyst capable of full regeneration after S poisoning. Amine poisoning completely supressed the isomerization activity and the original activity could only be restored by calcination and reduction.
Resumo:
In this work, the oxidation of methylene blue textile dye in the presence of hydrogen peroxide, using niobium oxide impregnated with different proportions of tin (1, 5 and 10% in mass) as catalyst was studied. The materials were characterized by TPR, XPS, XRD and FTIR. The oxidation tests monitored by ESI-MS showed that the composite containing the higher amount of tin was the most efficient in the removal of the dye. The XRD, XPS, and TPR data presented evidence of the formation of the tin-niobium oxide composite containing Sn0 and supported SnO2.
Resumo:
Different parameters of carbon ceramic electrodes (CCE) preparation, such as type of precursor, carbon material, catalyst amount, among others, significantly influence the morphological properties and consequently their electrochemical responses. This paper describes a 2³ factorial design (2 factors and 3 levels with central point replicates), which the factors analyzed were catalyst amount (HCl 12 mol L-1), graphite/precursor ratio, and precursor type (TEOS - tetraethoxysilane and MTMOS - methyltrimetoxysilane). The design resulted in a significant third order interaction for peak current values (Ipa) and a second order interaction for potential difference (ΔE), between thefactors studied, which could not be observed when using an univariated study.
Resumo:
A comparative study based on potential energy surfaces (PES) of 2-butanedioic and hypothetic 2-butanedioic/HCl acids is useful for understanding the maleic acid isomerization. The PES enables locating conformers of minimum energy, intermediates of reactions and transition states. From contour diagrams, a set of possible reaction paths are depicted interconnecting the proposed structures. The study was carried out in absentia and in the presence of the catalyst (HCl), using an solvatation model provided by the Gaussian software package. Clearly, the effect of HCl is given by new reaction paths with lower energetic barriers in relation to the reaction without catalyzing.
Resumo:
The tebuconazole photocatalytic degradation kinetics was studied in a batch reactor using TiO2 (P25-Degussa) as catalyst and a high pressure mercury lamp. The photolysis, adsorption and irradiation effects in the reaction rate were evaluated. Afterward, the suspension catalyst concentration and initial pH to the maximum reaction rate was determined. It was observed that the reaction rate can be approached by a pseudo-first order, with a maximum kinetics constant at 260 mg L-1catalyst concentration and pH 7.7.
Resumo:
Sodium faujasite zeolites with Si/Al ratio of 1.4 and 2.5 were exchanged with methylammonium cations. The influence of framework aluminum and ion exchange degree in their basic properties were evaluated. These properties were assessed in the Knoevenagel catalytic condensation. The sodium ion exchange was restricted to the supercavity and the exchange degree depended on the cation volume and on the Si/Al ratio. The higher catalytic activity is achieved for the zeolite with the lower Si/Al ratio exchanged with the monomethylammonium cation. The best performance of this catalyst is attributed to the higher basicity in combination with elevated micropore volume.
Resumo:
Hydrogenation of (-)-menthone and (+)-isomenthone was studied at 2.7 MPa and 100 ºC. The objective was to produce a liquid menthol mixture rich in (-)-menthol from dementholized peppermint oil. Ni-based catalysts were tested and compared for this reaction: a) 6 and 12% Ni dispersed into a nonstoichiometric magnesium aluminate (Ni-Mg-Al) with spinel structure; b) Ni-Raney catalyst. Both types of catalysts were active for (-)-menthone and (+)-isomenthone hydrogenation. Lower conversion but higher selectivity to (-)-menthol was obtained with Ni-Mg-Al catalysts. However, they rapidly lost their activity. Instead Ni-Raney catalysts kept its original activity even after several hydrogenation runs.
Resumo:
In this work, a TPR (Temperature Programmed Reduction) system is used as a powerful tool to monitor carbon nanotubes production during CVD (Chemical Vapour Deposition), The experiments were carried out using catalyst precursors based on Fe-Mo supported on Al2O3 and methane as carbon source. As methane reacts on the Fe metal surface, carbon is deposited and H2 is produced. TPR is very sensitive to the presence of H2 and affords information on the temperature where catalyst is active to form different forms of carbon, the reaction kinetics, the catalyst deactivation and carbon yields.