915 resultados para REGULATORY GUARANTEES
Resumo:
Immunomodulation is a common feature of chronic helminth infections and mainly attributed to the secretion of bioactive molecules, which target and modify host immune cells. In this study, we show that the helminth immunomodulator AvCystatin, a cysteine protease inhibitor, induces a novel regulatory macrophage (Mreg; AvCystatin-Mreg), which is sufficient to mitigate major parameters of allergic airway inflammation and colitis in mice. A single adoptive transfer of AvCystatin-Mreg before allergen challenge suppressed allergen-specific IgE levels, the influx of eosinophils into the airways, local and systemic Th2 cytokine levels, and mucus production in lung bronchioles of mice, whereas increasing local and systemic IL-10 production by CD4(+) T cells. Moreover, a single administration of AvCystatin-Mreg during experimentally induced colitis strikingly reduced intestinal pathology. Phenotyping of AvCystatin-Mreg revealed increased expression of a distinct group of genes including LIGHT, sphingosine kinase 1, CCL1, arginase-1, and costimulatory molecules, CD16/32, ICAM-1, as well as PD-L1 and PD-L2. In cocultures with dendritic cells and CD4(+) T cells, AvCystatin-Mreg strongly induced the production of IL-10 in a cell-contact-independent manner. Collectively, our data identify a specific suppressive macrophage population induced by a single parasite immunomodulator, which protects against mucosal inflammation.
Resumo:
Small non-protein-coding RNA (ncRNA) molecules represent major contributors to regulatory networks in controlling gene expression in a highly efficient manner. All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. To address the question, whether small ncRNA regulators exist that are capable of modulating the rate of protein production by directly interacting with the ribosome, we have analyzed the small ncRNA interactomes of ribosomes Deep-sequencing and subsequent bioinformatic analyses revealed thousands of putative ribosome-associated ncRNAs in various model organisms (1,2). For a subset of these ncRNA candidates we have gathered experimental evidence that they associate with ribosomes in a stress-dependent manner and are capable of regulating gene expression by fine-tuning the rate of protein biosynthesis (3,4). Many of the investigated ribosome-bound small ncRNA appear to be processing products from larger functional RNAs, such as tRNAs (2,3) or mRNAs (3). Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. Our data reveal the ribosome as a target for small regulatory ncRNAs and demonstrate the existence of a yet unknown mechanism of translation regulation. Ribosome-associated ncRNAs (rancRNAs) are found in all domains of life and represent a prevalent but so far largely unexplored class of regulatory molecules (5). Future work on the small ncRNA interactomes of ribosomes in a variety of model systems will allow deeper insight into the conservation and functional repertoire of this emerging class of regulatory ncRNA molecules.
Resumo:
The paracaspase MALT1 plays an important role in immune receptor-driven signaling pathways leading to NF-κB activation. MALT1 promotes signaling by acting as a scaffold, recruiting downstream signaling proteins, as well as by proteolytic cleavage of multiple substrates. However, the relative contributions of these two different activities to T and B cell function are not well understood. To investigate how MALT1 proteolytic activity contributes to overall immune cell regulation, we generated MALT1 protease-deficient mice (Malt1(PD/PD)) and compared their phenotype with that of MALT1 knockout animals (Malt1(-/-)). Malt1(PD/PD) mice displayed defects in multiple cell types including marginal zone B cells, B1 B cells, IL-10-producing B cells, regulatory T cells, and mature T and B cells. In general, immune defects were more pronounced in Malt1(-/-) animals. Both mouse lines showed abrogated B cell responses upon immunization with T-dependent and T-independent Ags. In vitro, inactivation of MALT1 protease activity caused reduced stimulation-induced T cell proliferation, impaired IL-2 and TNF-α production, as well as defective Th17 differentiation. Consequently, Malt1(PD/PD) mice were protected in a Th17-dependent experimental autoimmune encephalomyelitis model. Surprisingly, Malt1(PD/PD) animals developed a multiorgan inflammatory pathology, characterized by Th1 and Th2/0 responses and enhanced IgG1 and IgE levels, which was delayed by wild-type regulatory T cell reconstitution. We therefore propose that the pathology characterizing Malt1(PD/PD) animals arises from an immune imbalance featuring pathogenic Th1- and Th2/0-skewed effector responses and reduced immunosuppressive compartments. These data uncover a previously unappreciated key function of MALT1 protease activity in immune homeostasis and underline its relevance in human health and disease.
Resumo:
Embryonic-maternal interaction from the earliest stages of gestation has a key, sustained role in neurologic development, persisting into adulthood. Early adverse events may be detrimental in adulthood. Protective factors present during gestation could significantly impact post-natal therapy. The role of PreImplantation Factor (PIF) within this context is herein examined. Secreted by viable early embryos, PIF establishes effective embryonic-maternal communication and exerts essential trophic and protective roles by reducing oxidative stress and protein misfolding and by blunting the nocive let-7 microRNA related pathway. PIF's effects on systemic immunity lead to comprehensive immune modulation, not immune suppression. We examine PIF's role in protecting embryos from adverse maternal environment, which can lead to neurological disorders that may only manifest post-nataly: Synthetic PIF successfully translates endogenous PIF features in both pregnant and non-pregnant clinically relevant models. Specifically PIF has neuroprotective effects in neonatal prematurity. In adult relapsing-remitting neuroinflammation, PIF reverses advanced paralysis while promoting neurogenesis. PIF reversed Mycobacterium smegmatis induced brain infection. In graft-vs.-host disease, PIF reduced skin ulceration, liver inflammation and colon ulceration while maintaining beneficial anti-cancer, graft-vs.-leukemia effect. Clinical-grade PIF has high-safety profile even at supraphysiological doses. The FDA awarded Fast-Track designation, and university-sponsored clinical trials for autoimmune disorder are ongoing. Altogether, PIF properties point to its determining regulatory role in immunity, inflammation and transplant acceptance. Specific plans for using PIF for the treatment of complex neurological disorders (ie. traumatic brain injury, progressive paralysis), including neuroprotection from newborn to adult, are presented.
Resumo:
PROBLEM Given the important role of regulatory T cells (Treg) for successful pregnancy, the ability of soluble maternal and fetal pregnancy factors to induce human Treg was investigated. METHOD OF STUDY Peripheral blood mononuclear cells (PBMCs) or isolated CD4+CD25‒ cells were cultured in the presence of pooled second or third trimester pregnancy sera, steroid hormones or supernatants from placental explants, and the numbers and function of induced CD4+CD25+FOXP3+ Treg were analysed. RESULTS Third trimester pregnancy sera and supernatants of early placental explants, but not sex steroid hormones, induced an increase of Tregs from PBMCs. Early placental supernatant containing high levels of tumour necrosis factor-α, interferon-γ, interleukins -1, -6 and -17, soluble human leucocyte antigen-G, and transforming growth factor-β1, increased the proportion of Treg most effectively and was able to induce interleukin-10-secreting-Treg from CD4+CD25‒cells. CONCLUSIONS Compared with circulating maternal factors, placental- and fetal-derived factors appear to exert a more powerful effect on numerical changes of Treg, thereby supporting fetomaternal tolerance during human pregnancy.
Resumo:
Apoptosis plays an important role in intervertebral disc degeneration (IDD). Overwhelming evidence indicates that RASSF7 is essential for cell growth and apoptosis. Recently, it has been noted that the JNK signaling can be negatively regulated by suppressing phosphorylated-MKK7 activation during pro-apoptosis. We aimed to investigate the RASSF7 expression level in human degenerative nucleus pulposus (NP) cells and non-degenerative NP cells and the link between RASSF7-JNK with NP cells apoptosis. We harvested NP tissues from 20 IDD patients as disease group and 8 cadaveric donors as normal controls. We detected RASSF7 expression by Real-time-PCR and western blotting. Consequently, we found that the expression of RASSF7 was higher in non-degenerative group than in degenerative group (P<0.05). Overexpression of RASSF7 in degenerative NP cells led to decreased apoptosis rate than that in scramble group (P<0.05). Collectively, our findings suggest that RASSF7 plays an important role in human IDD and RASSF7 might be potentially developed as a curative agent.
Resumo:
Employment-related policies are sensitive by any standard, and they remain basically national despite international labour standards (ILS) being even older than the United Nations. Globalization is changing this situation where countries may have to choose between ‘more’ or ‘better’ jobs. The multilateral framework of the World Trade Organization (WTO) can only have an indirect impact. But Regional Trade Agreements (RTA) and International Investment Agreements (IIA) are emerging as a new way of gradually enhancing the impact of certain labour standards. In addition, unilateral measures both by governments and importers driven by social and environmental consumer preferences and pressure groups increasingly shape the international regulatory framework for national employment policies. Even small, locally operating enterprises risk marginalization and market exclusion by ignoring these developments. The long-term influence of this new ‘network approach’ on employment-related policies, including job location, gender issues, social coherence and migration remains to be seen. Nonetheless, the still flimsy evidence gathered here seems to indicate that this new, international framework might increase sustainable employment where and when supporting measures, including through unilateral preferences and even sanctions, form a ‘cocktail’ which export-oriented industries and their suppliers will find palatable.
Resumo:
Induction of cell-autonomous apoptosis following oncogene-induced overproliferation is a major tumor-suppressive mechanism in vertebrates. However, the detailed mechanism mediating this process remains enigmatic. In this study, we demonstrate that dMyc-induced cell-autonomous apoptosis in the fruit fly Drosophila melanogaster relies on an intergenic sequence termed the IRER (irradiation-responsive enhancer region). The IRER mediates the expression of surrounding proapoptotic genes, and we use an in vivo reporter of the IRER chromatin state to gather evidence that epigenetic control of DNA accessibility within the IRER is an important determinant of the strength of this response to excess dMyc. In a previous work, we showed that the IRER also mediates P53-dependent induction of proapoptotic genes following DNA damage, and the chromatin conformation within IRER is regulated by polycomb group-mediated histone modifications. dMyc-induced apoptosis and the P53-mediated DNA damage response thus overlap in a requirement for the IRER. The epigenetic mechanisms controlling IRER accessibility appear to set thresholds for the P53- and dMyc-induced expression of apoptotic genes in vivo and may have a profound impact on cellular sensitivity to oncogene-induced stress.
Resumo:
To understand how a eukaryote achieves differential transcription of genes in precise spatial patterns, the molecular details of tissue specific expression of the Strongylocentrotus purpuratus Spec2a gene were investigated by functional studies of the cis-regulatory components in the upstream enhancer. Regional activation of Spec2a in the aboral ectoderm is conferred by a combination of activators and repressors. The positive regulators include previously identified SpOtx and a trans-regulatory factor binding at the CCAAT site in the Spec2a enhancer. The nuclear protein binding to the CCAAT box was determined to be the heterotrimeric CCAAT binding factor (SpCBF). SpCBF also mediates general activation in the ectoderm. The negative regulators consist of an oral ectoderm repressor (OER), an endoderm repressor (ENR), and an S. Purpuratus goosecoid homologue (SpGsc). OER functions to prevent expression in the oral ectoderm, while ENR is required to repress endoderm expression. SpGsc antagonizes the SpOtx function by competing for binding at SpOtx target genes in oral ectoderm, where it functions as an active repressor. Thus, SpOtx and SpGsc perform collectively to establish and maintain the oral-aboral axis. Finally, purification of ENR and OER proteins from sea urchin blastula stage nuclear extracts was performed using site-specific DNA-affmity chromatography. ^
Resumo:
Analysis of the human genome has revealed that more than 74% of human genes undergo alternative RNA splicing. Aberrations in alternative RNA splicing have been associated with several human disorders, including cancer. ^ We studied the aberrant expression of alternative RNA splicing isoforms of the Fibroblast Growth Factor Receptor 1 (FGFR1) gene in a human glioblastoma cancer model. Normal glial cells express the FGFR1α, which contains three extracellular domains. In tumors the most abundant isoform is the FGFR1β, which lacks the first extracellular domain due to the skipping of a single exon, termed alpha. The skipping of the α-exon is regulated by two intronic silencing sequences within the precursor mRNA. Since we observed no mutations on these elements in tumor cells, we hypothesized that the over-expression of regulatory proteins that recognize these sequences is responsible for the aberrant expression of splicing isoforms. Hence, we blocked the formation of protein complexes on the ISS using antisense RNA oligonucleotides in vitro. We also evaluated the impact of the ISS antisense oligonucleotides on the endogenous FGFR1 splicing, in a glioblastoma cell model. By targeting intronic regulatory elements we were able to increase the level of alpha exon inclusion up to 90% in glioblastoma cells. The effect was dose dependent, sequence specific and reproducible in glioblastoma and other cancer cells, which also exhibit an alpha exon skipping phenotype. Targeting FGFR1 endogenous ISS1 and ISS2 sequences did not have an additive or synergistic effect, which suggest a regulatory splicing mechanism that requires the interaction of complexes formed on these elements. An increase in the levels of the FGFR1α isoform resulted in a reduction in cell invasiveness. Also, a significant increase in the levels of caspase 3/7 activities, which is indicative of an elevation in apoptosis levels, suggests that expression of FGFR1β might be relevant for tumor survival. These studies demonstrate that it is possible to prevent aberrant expression of exon skipping events through the targeting of intronic regulatory elements, providing an important new therapeutic tool for the correction of human disease caused by alternative RNA splicing. ^
Resumo:
Regulatory T cells expressing the fork-head box transcription factor 3 (Foxp3) play a central role in the dominant control of immunological tolerance. Compelling evidence obtained from both animal and clinical studies have now linked the expansion and accumulation of Foxp3+ regulatory T cells associated with tumor lesions to the failure of immune-mediated tumor rejection. However, further progress of the field is hampered by the gap of knowledge regarding their phenotypic, functional, and the developmental origins in which these tumor-associated Foxp3+ regulatory T cells are derived. Here, we have characterized the general properties of tumor-associated Foxp3+ regulatory T cells and addressed the issue of tumor microenvironment mediated de-novo induction by utilizing a well known murine tumor model MCA-205 in combination with our BAC Foxp3-GFP reporter mice and OT-II TCR transgenic mice on the RAG deficient background (RAG OT-II). De-novo induction defines a distinct mechanism of converting non-regulatory precursor cells to Foxp3+ regulatory T cells in the periphery as opposed to the expansion of pre-existing regulatory T cells formed naturally during thymic T cell development. This mechanism is of particularly importance to how tumors induce tumor-antigen-specific suppressor cells to subvert anti-tumor immune responses. Our study has found that tumor-associated Foxp3+ regulatory T cells are highly activated, undergo vigorous proliferation, are more potent by in-vitro suppression assays, and express higher levels of membrane-bound TGF-β1 than non-tumor regulatory T cells. With Foxp3-GFP reporter mice or RAG OT-II TCR transgenic mice, we show that tumor tissue can induce detectable de-novo generation of Foxp3+ regulatory T cells of both polyclonal or antigen specific naïve T cells. This process was not only limited for subcutaneous tumors but for lung tumors as well. Furthermore, this process required the inducing antigen to be co-localized within the tumor tissue. Examination of tumor tissue revealed an abundance of myeloid CD11b+ antigen-presenting cells that were capable of inducing Foxp3+ regulatory T cells. Taken together, these findings elucidate the general attributes and origins of tumor-associated Foxp3+ regulatory T cells in the tumor microenvironment and in their role in the negative regulation of tumor immunity.^