936 resultados para RAY PHOTOEMISSION SPECTROSCOPY
Resumo:
A templateless, surfactantless, electrochemical approach is proposed to directly fabricate hierarchical flowerlike gold microstructures (HFGMs) on an indium tin oxide (ITO) substrate. The as-prepared HFGMs have been characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and cyclic voltammetry.
Resumo:
A templateless, surfactantless, electrochemical route is proposed to directly fabricate hierarchical spherical cupreous microstructures (HSCMs) on an indium tin oxide (ITO) substrate. The as-prepared HSCMs have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD).
Resumo:
A rapid, templateless, surfactantless approach is proposed to prepare microfibrils by simply mixing of aqueous cupric sulfate and o-phenylenediamine (oPD) solutions at room temperature. The as-prepared poly(o-phenylenediamine) (PoPD) microfibrils have been characterized by optical microscope, transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis) and X-ray diffraction (XRD).
Resumo:
Three-dimensional (3D) macroporous Pt (MPPt) with highly open porous walls has been successfully synthesized using the hydrogen bubble dynamic template synthesis and galvanic replacement reaction. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electrochemical methods were adopted to characterize their structures and properties.
Resumo:
DNA was efficiently bound to water-soluble positively charged CdTe quantum dots (QDs) through complementary electrostatic interaction. These QDs-DNA complexes were disrupted and DNA was released by glutathione (GSH) at intracellular concentrations. Interestingly, there was almost no detectable DNA released by extracellular concentration of GSH. The formation of QDs-DNA complexes and GSH-mediated DNA release from the complexes were confirmed by dye displacement assay, electrophoretic mobility shift assay (EMSA), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) experiments.
Resumo:
Thin films of poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN) blend can phase separate upon heating to above its critical temperature. Temperature dependence of the surface composition and morphology in the blend thin film upon thermal treatment was studied using in situ X-ray photoelectron spectroscopy (XPS) and in situ atomic force microscopy (AFM). It was found that in addition to phase separation, the blend component preferentially diffused to and aggregated at the surface of the blend film, leading to the variation of surface composition with temperature. At 185 degrees C, above the critical temperature, the amounts of PMMA and SAN phases were comparable.
Resumo:
We first suggested a one-pot method to synthesize monodisperse raspberry-like submicrometer gold spheres (MRSGS) with high yield. The resulting gold spheres were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersed X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and electrochemical technology. It was found that the rough structure provided by raspberry-like gold spheres led to a tremendous electrochemical active area, which was very important because these novel hierarchical gold spheres will probably find important applications in biosensors, electrocatalysis, and others.
Resumo:
The reversible fabrication of positive and negative nanopatterns on 1-hexadecanethiol (HDT) self-assembled monolayers (SAMs) on Au(111) was realized by bias-assisted atomic force microscopy (AFM) nanolithography using an ethanol-ink tip. The formation of positive and negative nanopatterns via the bias-assisted nanolithography depends solely on the polarity of the applied bias, and their writing speeds can reach 800,um/s and go beyond 1000 mu m/s, respectively. The composition of the positive nanopatterns is gold oxide and the nanometer-scale gold oxide can be reduced by ethanol to gold, as proved by X-ray photoelectron spectroscopy (XPS) analysis, forming the negative nanopatterns which can be refilled with HDT to recover the SAMs.
Resumo:
Electrodeposition of novel Au/Pd bimetallic nanostructures with dendrimer films as matrices has been reported. The dendrimers exhibited highly open structures arising from protonation of amines and this made them have good penetrability for solvent molecules. The unique properties of dendrimers obviously affected the morphologies and compositions of deposited bimetallic nanostructures compared with those from unmodified surfaces. Field-emitted scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy and UV-vis spectroscopy were used to characterize these nanostructures.
Resumo:
A novel selenium source was developed to synthesize the size-controlled CdSe nanocrystals with relatively narrow size distribution successfully in a two-phase thermal approach. A highly reactive and aqueous soluble selenium source was provided by the reduction of selenite, and in this route the size of the nanocrystals can be adjusted by the reaction temperature and time. The size, crystalline structure and optical characteristics of these nanocrystals were investigated by transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, UV-vis spectroscopy, and photoluminescence spectroscopy. The influence factors for this approach were also discussed.
Resumo:
A carbon-supported palladium catalyst modified by non-metal phosphorus(PdP/C) has been developed as an oxygen reduction catalyst for direct methanol fuel cells.The PdP/C catalyst was prepared by the sodium hypophosphite reduction method. The as-prepared Pd nanoparticles have a narrow size distribution with an average diameter of 2 nm. Energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) results indicate that P enters into the crystal lattice of Pd and forms an alloy.
Resumo:
A novel biodegradable diblock copolymer, poly(L-cysteine)-b-Poly(L-lactide) (PLC-b-PLLA), was synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of beta-benzyloxycarbonyl-L-Cysteine (ZLC-NCA) with amino-terminated Poly(L-lactide) (NH2-PLLA) as a macroinitiator in a convenient way. The diblock copolymer and its precursor were characterized by H-1 NMR, Fourier transform infrared (FT-IR), gel permeation chromatography (GPC), and X-ray photoelectron spectroscopy (XPS) measurements. The length of each block polymer could be tailored by molecular design and the ratios of feeding monomers.
Resumo:
Model protein bovine serum albumin (BSA) was covalently grafted onto poly[(L-lactide)co-carbonate] microsphere surfaces by "click chemistry." The grafting was confirmed by confocal laser scanning microscopy and X-ray photoelectron spectroscopy. The maximum amount of surface-grafted BSA was 45 mg.g(-1). The secondary structure of the grafted BSA was analyzed by FTIR and the results demonstrated that the grafting did not affect protein structure. This strategy can also be used on microspheres prepared from poly(L-lactide)/poly[(L-lactide)-co-carbonate] blend materials.
Resumo:
Multiwalled carbon nanotube (MWCNT)/ionic liquid/gold nanoparticle hybrid materials have been prepared by a chemical route that involves functionalization of MWCNT with amine-terminated ionic liquids followed by deposition of Au. Transmission electron microscopy revealed well-distributed Au with a narrow size distribution centered around 3.3 nm. The identity of the hybrid material was confirmed through Raman and X-ray photoelectron spectroscopy.