977 resultados para Quantum wires
Resumo:
Lateral ordering of InGaAs quantum dots on the GaAs (001) surface has been achieved in earlier reports, resembling an anisotropic pattern. In this work, we present a method of breaking the anisotropy of ordered quantum dots (QDs) by changing the growth environment. We show experimentally that using As(2) molecules instead of As(4) as a background flux is efficient in controlling the diffusion of distant Ga adatoms to make it possible to produce isotropic ordering of InGaAs QDs over GaAs (001). The control of the lateral ordering of QDs under As(2) flux has enabled us to improve their optical properties. Our results are consistent with reported experimental and theoretical data for structure and diffusion on the GaAs surface.
Resumo:
By considering a network of dissipative quantum harmonic oscillators, we deduce and analyse the optimum topologies which are able to store quantum superposition states, protecting them from decoherence, for the longest period of time. The storage is made dynamically, in that the states to be protected evolve through the network before being retrieved back in the oscillator where they were prepared. The decoherence time during the dynamic storage process is computed and we demonstrate that it is proportional to the number of oscillators in the network for a particular regime of parameters.
Resumo:
A novel concept of quantum turbulence in finite size superfluids, such as trapped bosonic atoms, is discussed. We have used an atomic (87)Rb Bose-Einstein condensate (BEC) to study the emergence of this phenomenon. In our experiment, the transition to the quantum turbulent regime is characterized by a tangled vortex lines formation, controlled by the amplitude and time duration of the excitation produced by an external oscillating field. A simple model is suggested to account for the experimental observations. The transition from the non-turbulent to the turbulent regime is a rather gradual crossover. But it takes place in a sharp enough way, allowing for the definition of an effective critical line separating the regimes. Quantum turbulence emerging in a finite-size superfluid may be a new idea helpful for revealing important features associated to turbulence, a more general and broad phenomenon. [GRAPHICS] Amplitude versus elapsed time diagram of magnetically excited BEC superfluid, presenting the evolution from the non-turbulent regime, with well separated vortices, to the turbulent regimes, with tangled vortices (C) 2011 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
Resumo:
In this paper, we demonstrate that the inevitable action of the environment can be substantially weakened when considering appropriate nonstationary quantum systems. Beyond protecting quantum states against decoherence, an oscillating frequency can be engineered to make the system-reservoir coupling almost negligible. Differently from the program for engineering reservoir and similarly to the schemes for dynamical decoupling of open quantum systems, our technique does not require previous knowledge of the state to be protected. However, differently from the previously-reported schemes for dynamical decoupling, our technique does not rely on the availability of tailored external pulses acting faster than the shortest timescale accessible to the reservoir degree of freedom.
Resumo:
We demonstrate that nanomechanically stamped substrates can be used as templates to pattern and direct the self-assembly of epitaxial quantum structures such as quantum dots. Diamond probe tips are used to indent or stamp the surface of GaAs( 100) to create nanoscale volumes of dislocation-mediated deformation, which alter the growth surface strain. These strained sites act to bias nucleation, hence allowing for selective growth of InAs quantum dots. Patterns of quantum dots are observed to form above the underlying nanostamped template. The strain state of the patterned structures is characterized by micro-Raman spectroscopy. The potential of using nanoprobe tips as a quantum dot nanofabrication technology are discussed.
Resumo:
We investigate the combined influence of quenched randomness and dissipation on a quantum critical point with O(N) order-parameter symmetry. Utilizing a strong-disorder renormalization group, we determine the critical behavior in one space dimension exactly. For super-ohmic dissipation, we find a Kosterlitz-Thouless type transition with conventional (power-law) dynamical scaling. The dynamical critical exponent depends on the spectral density of the dissipative baths. We also discuss the Griffiths singularities, and we determine observables.
Resumo:
In a previous paper, we developed a phenomenological-operator technique aiming to simplify the estimate of losses due to dissipation in cavity quantum electrodynamics. In this paper, we apply that technique to estimate losses during an entanglement concentration process in the context of dissipative cavities. In addition, some results, previously used without proof to justify our phenomenological-operator approach, are now formally derived, including an equivalent way to formulate the Wigner-Weisskopf approximation.
Resumo:
In this work, we identify the set of time-dependent pure states building the statistical mixture to which a system, initially in a pure state, is driven by the reservoir. This set of time-dependent pure states, composing what we term a pure basis, are those that diagonalize the reduced density operator of the system. Next, we show that the evolution of the pure-basis states reveals an interesting phenomenon as the system, after decoherence, evolves toward the equilibrium: the spontaneous recoherence of quantum states. Around our defined recoherence time, the statistical mixture associated with a special kind of initial states termed even-symmetric, spontaneously undergoes a recoherence process, by which the initial state of the system emerges from the mixture except for its reduced excitation drained into the reservoir. This phenomenon reveals that the reservoir only shuffle the original information carried out by the initial state of the system instead of erasing it. Moreover, as the spontaneously recohered state occurs only for asymptotic time, we also present a protocol to extract it from the mixture through specific projective measurements. The password to retrieve the original information stems is the knowledge of both the initial state itself and the associated pure basis. A definition of the decoherence time of an N-state superposition is also presented.
Resumo:
The spectral properties and phase diagram of the exactly integrable spin-1 quantum chain introduced by Alcaraz and Bariev are presented. The model has a U(1) symmetry and its integrability is associated with an unknown R-matrix whose dependence on the spectral parameters is not of a different form. The associated Bethe ansatz equations that fix the eigenspectra are distinct from those associated with other known integrable spin models. The model has a free parameter t(p). We show that at the special point t(p) = 1, the model acquires an extra U(1) symmetry and reduces to the deformed SU(3) Perk-Schultz model at a special value of its anisotropy q = exp(i2 pi/3) and in the presence of an external magnetic field. Our analysis is carried out either by solving the associated Bethe ansatz equations or by direct diagonalization of the quantum Hamiltonian for small lattice sizes. The phase diagram is calculated by exploring the consequences of conformal invariance on the finite-size corrections of the Hamiltonian eigenspectrum. The model exhibits a critical phase ruled by the c = 1 conformal field theory separated from a massive phase by first-order phase transitions.
Resumo:
We study the influence of ferromagnetic and antiferromagnetic bond defects on the ground-state energy of antiferromagnetic spin chains. In the absence of translational invariance, the energy spectrum of the full Hamiltonian is obtained numerically, by an iterative modi. cation of the power algorithm. In parallel, approximate analytical energies are obtained from a local-bond approximation, proposed here. This approximation results in significant improvement upon the mean-field approximation, at negligible extra computational effort. (C) 2008 Published by Elsevier B.V.
Resumo:
This article reports a relaxation study in an oriented system containing spin 3/2 nuclei using quantum state tomography (QST). The use of QST allowed evaluating the time evolution of all density matrix elements starting from several initial states. Using an appropriated treatment based on the Redfield theory, the relaxation rate of each density matrix element was measured and the reduced spectral densities that describe the system relaxation were determined. All the experimental data could be well described assuming pure quadrupolar relaxation and reduced spectral densities corresponding to a superposition of slow and fast motions. The data were also analyzed in the context of Quantum Information Processing, where the coherence loss of each qubit of the system was determined using the partial trace operation. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
NMR quantum information processing studies rely on the reconstruction of the density matrix representing the so-called pseudo-pure states (PPS). An initially pure part of a PPS state undergoes unitary and non-unitary (relaxation) transformations during a computation process, causing a ""loss of purity"" until the equilibrium is reached. Besides, upon relaxation, the nuclear polarization varies in time, a fact which must be taken into account when comparing density matrices at different instants. Attempting to use time-fixed normalization procedures when relaxation is present, leads to various anomalies on matrices populations. On this paper we propose a method which takes into account the time-dependence of the normalization factor. From a generic form for the deviation density matrix an expression for the relaxing initial pure state is deduced. The method is exemplified with an experiment of relaxation of the concurrence of a pseudo-entangled state, which exhibits the phenomenon of sudden death, and the relaxation of the Wigner function of a pseudo-cat state.
Resumo:
In this work we applied a quantum circuit treatment to describe the nuclear spin relaxation. From the Redfield theory, we obtain a description of the quadrupolar relaxation as a computational process in a spin 3/2 system, through a model in which the environment is comprised by five qubits and three different quantum noise channels. The interaction between the environment and the spin 3/2 nuclei is described by a quantum circuit fully compatible with the Redfield theory of relaxation. Theoretical predictions are compared to experimental data, a short review of quantum channels and relaxation in NMR qubits is also present.
Resumo:
Structural and conformational properties of 1H-Isoindole-1,3(2H)-dione, 2-[(methoxycarbonyl)thio] (S-phthalimido O-methyl thiocarbonate) are analyzed using a combined approach including X-ray diffraction, vibrational spectra and theoretical calculation methods. The vibrational properties have been studied by infrared and Raman spectroscopies along with quantum chemical calculations (B3LYP and B3PW91 functional in connection with the 6-311++G** and aug-cc-pVDZ basis sets). The crystal structure was determined by X-ray diffraction methods. The substance crystallizes in the monoclinic P2(1)/c space group with a = 6.795(1), b = 5.109(1), c = 30.011(3) angstrom, beta = 90.310(3)degrees and Z = 4 molecules per unit cell. The conformation adopted by the N-S-C=O group is syn (C=O double bond in synperiplanar orientation with respect to the N-S single bond). The experimental molecular structure is well reproduced by the MP2/aug-cc-pVDZ method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
As a laboratory for loop quantum gravity, we consider the canonical quantization of the three-dimensional Chern-Simons theory on a noncompact space with the topology of a cylinder. Working within the loop quantization formalism, we define at the quantum level the constraints appearing in the canonical approach and completely solve them, thus constructing a gauge and diffeomorphism invariant physical Hilbert space for the theory. This space turns out to be infinite dimensional, but separable.