977 resultados para Pulsed reactors.
Resumo:
INTRODUCTION: Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen commonly associated with nosocomial infections. However, it has also been associated with community-acquired skin and soft tissue infections (CA-MRSA). There are few data on the identification and prevalence of CA-MRSA infections in Brazil. METHODS: This is a cross-sectional study of 104 patients with community-acquired skin infections attending two health care centers in Porto Alegre, southern Brazil. MRSA isolates were characterized by molecular methods, including detection of the mecA gene by PCR, gene SCCmec typing, Panton-Valentine leukocidin (PVL) detection, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). RESULTS: From the 104 samples, 58 Staphylococcus aureus isolates were obtained, of which five (8.6%) had a CA-MRSA-resistant profile. All five isolates had the mecA gene and amplified to SCCmec type IV. Analysis of chromosomal DNA by PFGE revealed the presence of two clusters related to international clones (OSPC and USA 300), with a Dice similarity coefficient >80%. The study was complemented by MLST, which detected three different strains: ST30, ST8, and ST45, the latter not presenting any relation with the clones compared in PFGE. CONCLUSIONS: The presence of CA-MRSA reveals an important change in the epidemiology of this pathogen and adds new elements to the knowledge of the molecular biology of infections by MRSA with SCCmec type IV in southern Brazil.
Resumo:
INTRODUCTION: Epidemiological data on the prevalence of extended-spectrum β-lactamases (ESBLs) are scarce in Brazil despite the fact that these data are essential for empirical treatment and control measures. The objective of this study was to evaluate the prevalence of different ESBLs by type and distribution in a tertiary hospital in southern Brazil. METHODS: We evaluated 1,827 enterobacterial isolates between August 2003 and March 2008 isolated from patients at a tertiary hospital. Samples were identified using a Vitek automated system and were confirmed by biochemical testing. The identified ESBL strains were characterized by phenotypic methods, polymerase chain reaction (PCR), and sequencing. Genetic similarities were evaluated by pulsed-field gel electrophoresis. RESULTS: It was 390 (21.3%) ESBL-producing strains, which expressed the ESBLs CTX-M (292), SHV (84), CTX and SHV (10), TEM (2), and PER (2). CONCLUSIONS: The prevalence of ESBL-expressing strains was high, especially in Klebsiella pneumoniae and Enterobacter spp. CTX-M was the predominant type of ESBL observed, and its genetic variability indicates a polyclonal distribution.
Resumo:
INTRODUCTION: Acquired production of metallo-β-lactamases is an important mechanism of resistance in Pseudomonas aeruginosa. The objective of this study was to investigate the production of metallo-β-lactamase and the genetic diversity among ceftazidime-resistant P. aeruginosa isolates from State of Sergipe, Brazil. METHODS: Metallo-β-lactamase was investigated using the disk approximation test and polymerase chain reaction (PCR). Genetic diversity was evaluated by pulsed-field gel electrophoresis (PFGE). RESULTS: A total of 48 (51.6%) isolates were resistant to ceftazidime. Six (12.2%) of these were positive for metallo-β-lactamase production. Only two (4.1%) of the ceftazidime-resistant isolates carried the bla SPM-1 gene. CONCLUSIONS: Production of metallo-β-lactamases was not the main mechanism of resistance to ceftazidime and carbapenems among P. aeruginosa strains in Sergipe, Brazil.
Resumo:
Polyhydroxyalkanoates (PHA) production using mixed microbial cultures (MMC) requires a multi-stage process involving the microbial selection of PHA-storing microorganisms, typically operated in sequencing batch reactors (SBR), and an accumulation reactor. Since low-cost renewable feedstocks used as process feedstock are often nitrogen-deficient, nutrient supply in the selection stage is required to allow for microbial growth. In this context, the possibility to uncouple nitrogen supply from carbon feeding within the SBR cycle has been investigated in this study. Moreover, three different COD:N ratios (100:3.79, 100:3.03 and 100:2.43) were tested in three different runs which also allowed the study of COD:N ratio on the SBR performance. For each run, a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5 gCOD L-1 d-1 was used as carbon feedstock, whereas ammonium sulfate was the nitrogen source in a lab-scale sequence batch reactor (SBR) with 1 L of working volume. Besides, a sludge retention time (SRT) of 1 d was used as well as a 6 h cycle length. The uncoupled feeding strategy significantly enhanced the selective pressure towards PHA-storing microorganisms, resulting in a two-fold increase in the PHA production (up to about 1.3 gCOD L-1). A high storage response was observed for the two runs with the COD:N ratios (gCOD:gN) of 100:3.79 and 100:3.03, whereas the lowest investigated nitrogen load resulted in very poor performance in terms of polymer production. In fact, strong nitrogen limitation caused fungi to grow and a very poor storage ability by microorganisms that thrived in those conditions. The COD:N ratio also affected the polymer composition, indeed the produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) showed a variable HV content (1-20 %, w/w) among the three runs, lessening as the COD:N increased. This clearly suggests the possibility to use the COD:N ratio as a tool for tuning polymer properties regardless the composition of the feedstock.
Resumo:
Abstract INTRODUCTION: Methicillin-resistant Staphylococcus aureus (MRSA) is a nosocomial pathogen in community settings. MRSA colonized individuals may contribute to its dissemination; the risk of MRSA infection is increased in human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) patients, although the prevalence of colonization in this group is not well established. The present study addressed this issue by characterizing MRSA isolates from HIV/AIDS patients and their healthcare providers (HCPs) to determine whether transmission occurred between these two populations. METHODS: A total of 24 MRSA isolates from HIV-infected patients and five from HCPs were collected between August 2011 and May 2013. Susceptibility to currently available antimicrobials was determined. Epidemiological typing was carried out by pulsed-field gel electrophoresis, multilocus sequence typing, and Staphylococcus cassette chromosome (SCCmec) typing. The presence of heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) and heterogeneous daptomycin-resistant Staphylococcus aureus (hDRSA) was confirmed by population analysis profile. Isolates characterized in this study were also compared to isolates from 2009 obtained from patients at the same hospital. RESULTS: A variety of lineages were found among patients, including ST5-SCCmecII and ST30-SCCmecIV. Two isolates were Panton-Valentine leukocidin-positive, and hVISA and hDRSA were detected. MRSA isolates from two HCPs were not related to those from HIV/AIDS patients, but clustered with archived MRSA from 2009 with no known relationship to the current study population. CONCLUSIONS: ST105-SCCmecII clones that colonized professionals in 2011 and 2012 were already circulating among patients in 2009, but there is no evidence that these clones spread to or between HIV/AIDS patients up to the 7th day of their hospitalization.
Resumo:
An ion emitter consisting of a sharp silver tip covered in RbAg4I5 solid electrolyte film has been developed and studied. An accelerating potential is applied and Ag+ ions are emitted from the tip’s apex by field evaporation. The emitted ions are collected by a Faraday cup, producing a current on the pico/nanoampere level which is read by an electrometer. The tips were produced mechanically by sandpaper polishing. The sharpest tip produced had a 2:4 m apex radius. Two deposition methods were studied: thermal vacuum and pulsed laser deposition. The best tip produced a peak current value of 96nA at 180oC, and a quasi-stable 4nA emission current at 160oC, both using an extraction potential of 10kV . The emission dependence on time, temperature and accelerating potential has been studied. Deposited films were characterized by X-ray diffraction (XRD), profilometry, optical and Scanning Electron Microscope (SEM) and Secondary Ion Mass Spectroscopy (SIMS) measurements. Several ion emitters were developed, the latter ones were all able to maintain stable high ion emissions for long periods of time. This investigation was a continuation of an ongoing project backed by the European Space Agency, with the objective of making a proof of concept of this kind of ion emitter with potential application on ion thrusters for orbiting satellites. Going forward, it would be interesting to make a finer analysis of the electrolyte’s conductivity at high temperatures, explore Wien Effect-based emission and to further develop a multi-tip ion emitter prototype.
Resumo:
The objective of this study was to differentiate benign ovarian tumors from malignant ones before surgery using color and pulsed Doppler sonography, and to compare results obtained before and after use of contrast medium, thereby verifying whether contrast results in an improvement in the diagnostic sensitivity. METHODS: Sixty two women (mean age 49.9 years) with ovarian tumors were studied, 45 with benign and 17 with malignant tumors. All women underwent a transvaginal color Doppler ultrasonographic exam. A study of the arterial vascular flow was made in all tumor areas, as well as an impedance evaluation of arterial vascular flow using the resistance index. RESULT: Localization of the vessels in the tumor revealed a greater proportion of malignant tumors with detectable internal vascular flows (64%) than benign tumors with such flows (22%). There was a considerable overlap of these findings. The use of contrast identified a greater number of vessels with confirmation in the totality of tumors, but did not improve the Doppler capacity in tumoral differentiation. Malignant tumors presented lower values of resistance index than the benign ones, whether or not contrast was used. The cutoff value for resistance index that better maximized the Doppler sensitivity and specificity was 0.55. Through this value, an increase of the sensitivity after contrast use was obtained, varying from 47% to 82%, while specificity remained statistically unchanged. CONCLUSION: Although the injection of a microbubble agent improved the sensitivity of the method detecting vascularization of tumors, a positive finding for vascularization by this method was not clinically useful in the differentiation of benign and malignant ovarian tumors.
Resumo:
This work demonstrates the role of defects generated during rapid thermal annealing of pulsed laser deposited ZnO/Al2O3 multilayer nanostructures in presence of vacuum at different temperatures (Ta) (500–900 C) on their electrical conductance and optical characteristics. Photoluminescence (PL) emissions show the stronger green emission at Ta 600 C and violet–blue emission at TaP800 C, and are attributed to oxygen vacancies and zinc related defects (zinc vacancies and interstitials) respectively. Current–voltage (I–V) characteristics of nanostructures with rich oxygen vacancies and zinc related defects display the electroforming free resistive switching (RS) characteristics. Nanostructures with rich oxygen vacancies exhibit conventional and stable RS behavior with high and low resistance states (HRS/LRS) ratio 104 during the retention test. Besides, the dominant conduction mechanism of HRS and LRS is explained by trap-controlled-space-charge limited conduction mechanism, where the oxygen vacancies act as traps. On the other hand, nanostructures with rich zinc related defects show a diode-like RS behavior. The rectifying ratio is found to be sensitive on the zinc interstitials concentration. It is assumed that the rectifying behavior is due to the electrically formed interface layer ZnAl2O4 at the Zn defects rich ZnO crystals – Al2O3 x interface and the switching behavior is attributed to the electron trapping/de-trapping process at zinc vacancies.
Resumo:
Electroactive polymers are one of the most interesting class of polymers used as smart materials in various applications, such as the development of sensors and actuators for biomedical applications in areas such as smart prosthesis, implantable biosensors and biomechanical signal monitoring, among others. For acquiring or applying the electrical signal from/to the piezoelectric material, suitable electrodes can be produced from Ti based coatings with tailored multifunctional properties, conductivity and antibacterial characteristics, through Ag inclusions. This work reports on Ag-TiNx electrodes, deposited by d. c. and pulsed magnetron sputtering at room temperature on poly(vinylidene fluoride), PVDF, the all-round best piezoelectric polymer.. Composition of the electrodes was assessed by microanalysis X-ray system (EDS - energy dispersive spectrometer). The XRD results revealed that the deposition conditions preserve the polymer structure and suggested the presence of crystalline fcc-TiN phase and fcc-Ag phase in samples with N2 flow above 3 sccm. According to the results obtained from SEM analysis, the coatings are homogeneous and Ag clusters were found for samples with nitrogen flow above 3 sccm. With increasing nitrogen flow, the sheet resistivity tend to be lower than the samples without nitrogen, leading also to a decrease of the piezoelectric response. It is concluded that the deposition conditions do significantly affect the piezoelectric polymer, which maintain its characteristics for sensor/actuator applications.
Resumo:
Excessive accumulation of Long Chain Fatty Acids (LCFA) in methanogenic bioreactors is the cause of process failure associated to a severe decrease in methane production. In particular, fast and persistent accumulation of palmitate is critical and still not elucidated. Aerobes or facultative anaerobes were detected in those reactors, raising new questions on LCFA biodegradation. To get insight into the influence of oxygen, two bioreactors were operated under microaerophilic and anaerobic conditions, with oleate at 1 and 4 gCOD/(L d). Palmitate accumulated up to 2 and 16 gCOD/L in the anaerobic and microaerophilic reactor, respectively, which shows the importance of oxygen in this conversion. A second experiment was designed to understand the dynamics of oleate to palmitate conversion. A CSTR and a PFR were assembled in series and fed with oleate under microaerophilic conditions. HRT from 6 to 24 h were applied in the CSTR, and 14 to 52 min in the PFR. In the PFR a biofilm was formed where palmitate accounted for 82% of total LCFA. Pseudomonas was the predominant genus (42 %) in this biofilm, highlighting the role of aerobic and facultative anaerobic bacteria in LCFA bioconversion.
Resumo:
Tese de Doutoramento em Ciências - Especialidade em Física
Resumo:
Ag and AgxO thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering, respectively, with the final propose of functionalizing the SS316L substrate with antibacterial properties. The coatings were characterized chemically, physically and structurally. The coatings nanostructure was assessed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the coatings morphology was determined by scanning electron microscopy (SEM). The XRD and XPS analyses suggested that Ag thin film is composed by metallic Ag, which crystallizes in fcc-Ag phase, while the AgxO thin film showed both metallic Ag and Ag-O bonds, which crystalize in fcc-Ag and silver oxide phases. The SEM results revealed that Ag thin film formed a continuous layer, while AgxO layer was composed of islands with hundreds of nanometers surrounded by small nanoparticles with tens of nanometers. The surface wettability and surface tension parameters were determined by contact angle measurements, being found that Ag and AgxO surfaces showed very similar behavior, with all the surfaces showing a hydrophobic character. In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. Ag coatings did not show antibacterial behavior, contrarily to AgxO coating, which presented antibacterial properties against the studied bacteria. The presence of silver oxide phase along with the development of different morphology were pointed as the main factors in the origin of the antibacterial effect found in AgxO thin film. The present study demonstrated that AgxO coating presented antibacterial behavior and its application in cardiovascular stents is promising.
Resumo:
[Excerpt] Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) has been widely used for biomedical purposes because of its exceptional biocompatibility, bioactivity and osteoconductivity [1]. As these properties are directly related to HAp particles characteristics (size, morphology and purity), a very good control of the reaction conditions is required to obtain particles with the desired properties. Usually, HAp is synthesized by wet chemical precipitation in stirred tank batch reactors that often lead to inconsistencies in product specifications due to their low mixing efficiency [2]. (...)
Resumo:
OBJECTIVE: To identify the left inferior pulmonary vein as an indirect marker of increased pulmonary flow in congenital heart diseases.METHODS: We carried out a prospective consecutive study on 40 patients divided into 2 groups as follows: G1 - 20 patients diagnosed with congenital heart disease and increased pulmonary flow; G2 (control group) - 20 patients who were either healthy or had congenital heart disease with decreased or normal pulmonary flow. We obtained the velocity-time integral of the left inferior pulmonary vein flow, excluding the "reverse A" wave, with pulsed Doppler echocardiography.RESULTS: In G1, 19 out of the 20 patients had well-identified dilation of the left inferior pulmonary vein. No G2 patient had dilation of the left inferior pulmonary vein. Dilation of the left inferior pulmonary vein in conditions of increased pulmonary flow had sensitivity of 95%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 95% (1 false-negative case). The integral of time and velocity of the pulmonary venous flow obtained with pulsed Doppler echocardiography was greater in the G1 patients (G1=25.0±4.6 cm versus G2=14.8±2.1 cm, p=0.0001).CONCLUSION: The identification of dilation of the left inferior pulmonary vein suggests the presence of congenital heart disease with increased pulmonary flow. This may be used as an indirect sign of increased flow, mainly in malformations of difficult diagnosis, such as atrial septal defects of the venous sinus or coronary sinus type.
Resumo:
OBJECTIVE: To verify the hypothesis that the pulmonary vein pulsatility index is higher in fetuses of diabetic mothers than it is in normal fetuses of nondiabetic mothers. METHODS: Twenty-four fetuses of mothers with either gestational or previous diabetes (cases), and 25 normal fetuses of mothers without systemic disease (control) were examined. Fetuses were examined through prenatal Doppler and color flow mapping. The pulmonary vein pulsatility index was obtained by placing the pulsed Doppler sample volume over the right superior pulmonary vein and applying the formula (systolic velocity - presystolic velocity)/mean velocity. RESULTS: The mean gestational age of the study fetuses was 30.3±2.7 weeks, and gestational age of the controls was 29±3.3 weeks, with no significant difference in gestational age between groups (p=0.14). Fetuses of diabetic mothers had a mean pulmonary vein pulsatility index of 1.6±1, and those of the control group had an index of 0.86±0.27. CONCLUSION: Fetuses of diabetic mothers had pulmonary vein pulsatility indexes (parameter easily obtained through Doppler echocardiography that may be related to fetal diastolic function) higher than those in fetuses of mothers with normal glycemia.