967 resultados para Pulsating Fluid-flow
Resumo:
A morphological instability of a mushy layer due to a forced flow in the melt is analysed. The instability is caused by flow induced in the mushy layer by Bernoulli suction at the crests of a sinusoidally perturbed mush–melt interface. The flow in the mushy layer advects heat away from crests which promotes solidification. Two linear stability analyses are presented: the fundamental mechanism for instability is elucidated by considering the case of uniform flow of an inviscid melt; a more complete analysis is then presented for the case of a parallel shear flow of a viscous melt. The novel instability mechanism we analyse here is contrasted with that investigated by Gilpin et al. (1980) and is found to be more potent for the case of newly forming sea ice.
Resumo:
A potential problem with Ensemble Kalman Filter is the implicit Gaussian assumption at analysis times. Here we explore the performance of a recently proposed fully nonlinear particle filter on a high-dimensional but simplified ocean model, in which the Gaussian assumption is not made. The model simulates the evolution of the vorticity field in time, described by the barotropic vorticity equation, in a highly nonlinear flow regime. While common knowledge is that particle filters are inefficient and need large numbers of model runs to avoid degeneracy, the newly developed particle filter needs only of the order of 10-100 particles on large scale problems. The crucial new ingredient is that the proposal density cannot only be used to ensure all particles end up in high-probability regions of state space as defined by the observations, but also to ensure that most of the particles have similar weights. Using identical twin experiments we found that the ensemble mean follows the truth reliably, and the difference from the truth is captured by the ensemble spread. A rank histogram is used to show that the truth run is indistinguishable from any of the particles, showing statistical consistency of the method.
Resumo:
In recent years, computational fluid dynamics (CFD) has been widely used as a method of simulating airflow and addressing indoor environment problems. The complexity of airflows within the indoor environment would make experimental investigation difficult to undertake and also imposes significant challenges on turbulence modelling for flow prediction. This research examines through CFD visualization how air is distributed within a room. Measurements of air temperature and air velocity have been performed at a number of points in an environmental test chamber with a human occupant. To complement the experimental results, CFD simulations were carried out and the results enabled detailed analysis and visualization of spatial distribution of airflow patterns and the effect of different parameters to be predicted. The results demonstrate the complexity of modelling human exhalation within a ventilated enclosure and shed some light into how to achieve more realistic predictions of the airflow within an occupied enclosure.
Resumo:
Dynamic viscoelasticity of electrorheological fluids based on microcrystalline cellulose/castor oil suspensions was experimentally investigated in squeeze flow. The dependence of storage modulus G' and loss modulus G" parallel to external electric field on electric fields and strain amplitudes is presented. The experiments show that, when external electric field is higher than the critical field, the viscoelasticity of the ER fluids converts from linear to nonlinear, and the ER fluids transfer from solid-like state to fluid state with the growth of strain amplitude. The influences of strain amplitude and oscillatory frequency on the nonlinearity of viscoelasticity were also studied.
Resumo:
A lattice Boltzmann model able to simulate viscous fluid systems with elastic and movable boundaries is proposed. By introducing the virtual distribution function at the boundary, the Galilean invariance is recovered for the full system. As examples of application, the how in elastic vessels is simulated with the pressure-radius relationship similar to that of the pulmonary blood vessels. The numerical results for steady how are in good agreement with the analytical prediction, while the simulation results for pulsative how agree with the experimental observation of the aortic flows qualitatively. The approach has potential application in the study of the complex fluid systems such as the suspension system as well as the arterial blood flow.
Resumo:
Recent observations at the magnetopause and of the high-latitude ionosphere, suggest that the cusp may be pulsed in nature. Specifically ground-based observations in the dayside auroral oval reveal transient optical features accompanied by bursts of enhanced plasma flow. Also, recent interpretation has shown cusp satellite data to be consistent with a burst of enhanced reconnection. In this paper we use these observations to produce a scenario in which both the satellite and ground-based observations can be fitted. The scenario we develop is based on the flux transfer event (FTE) models of Southwood et al. and Scholer and shows that the signatures, at both low and high altitudes, can be interpreted in terms of FTEs.
Resumo:
We present a general approach based on nonequilibrium thermodynamics for bridging the gap between a well-defined microscopic model and the macroscopic rheology of particle-stabilised interfaces. Our approach is illustrated by starting with a microscopic model of hard ellipsoids confined to a planar surface, which is intended to simply represent a particle-stabilised fluid–fluid interface. More complex microscopic models can be readily handled using the methods outlined in this paper. From the aforementioned microscopic starting point, we obtain the macroscopic, constitutive equations using a combination of systematic coarse-graining, computer experiments and Hamiltonian dynamics. Exemplary numerical solutions of the constitutive equations are given for a variety of experimentally relevant flow situations to explore the rheological behaviour of our model. In particular, we calculate the shear and dilatational moduli of the interface over a wide range of surface coverages, ranging from the dilute isotropic regime, to the concentrated nematic regime.
Resumo:
The objective of this study was to select the optimal operational conditions for the production of instant soy protein isolate (SPI) by pulsed fluid bed agglomeration. The spray-dried SPI was characterized as being a cohesive powder, presenting cracks and channeling formation during its fluidization (Geldart type A). The process was carried out in a pulsed fluid bed, and aqueous maltodextrin solution was used as liquid binder. Air pulsation, at a frequency of 600 rpm, was used to fluidize the cohesive SPI particles and to allow agglomeration to occur. Seventeen tests were performed according to a central composite design. Independent variables were (i) feed flow rate (0.5-3.5 g/min), (ii) atomizing air pressure (0.5-1.5 bar) and (iii) binder concentration (10-50%). Mean particle diameter, process yield and product moisture were analyzed as responses. Surface response analysis led to the selection of optimal operational parameters, following which larger granules with low moisture content and high process yield were produced. Product transformations were also evaluated by the analysis of size distribution, flowability, cohesiveness and wettability. When compared to raw material, agglomerated particles were more porous and had a more irregular shape, presenting a wetting time decrease, free-flow improvement and cohesiveness reduction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The steady-state heat transfer in laminar flow of liquid egg yolk - an important pseudoplastic fluid food - in circular and concentric annular ducts was experimentally investigated. The average convection heat transfer coefficients, determined by measuring temperatures before and after heating sections with constant temperatures at the tube wall, were used to obtain simple new empirical expressions to estimate the Nusselt numbers for fully established flows at the thermal entrance of the considered geometries. The comparisons with existing correlations for Newtonian and non-Newtonian fluids resulted in excellent agreement. The main contribution of this work is to supply practical and easily applicable correlations, which are, especially for the case of annulus, rather scarce and extensively required in the design of heat transfer operations dealing with similar shear-thinning products. In addition, the experimental results may support existing theoretical analyses.
Resumo:
fit the context of normalized variable formulation (NVF) of Leonard and total variation diminishing (TVD) constraints of Harten. this paper presents an extension of it previous work by the authors for solving unsteady incompressible flow problems. The main contributions of the paper are threefold. First, it presents the results of the development and implementation of a bounded high order upwind adaptative QUICKEST scheme in the 3D robust code (Freeflow), for the numerical solution of the full incompressible Navier-Stokes equations. Second, it reports numerical simulation results for 1D hock tube problem, 2D impinging jet and 2D/3D broken clam flows. Furthermore, these results are compared with existing analytical and experimental data. And third, it presents the application of the numerical method for solving 3D free surface flow problems. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved,
Resumo:
We present an efficient numerical methodology for the 31) computation of incompressible multi-phase flows described by conservative phase-field models We focus here on the case of density matched fluids with different viscosity (Model H) The numerical method employs adaptive mesh refinements (AMR) in concert with an efficient semi-implicit time discretization strategy and a linear, multi-level multigrid to relax high order stability constraints and to capture the flow`s disparate scales at optimal cost. Only five linear solvers are needed per time-step. Moreover, all the adaptive methodology is constructed from scratch to allow a systematic investigation of the key aspects of AMR in a conservative, phase-field setting. We validate the method and demonstrate its capabilities and efficacy with important examples of drop deformation, Kelvin-Helmholtz instability, and flow-induced drop coalescence (C) 2010 Elsevier Inc. All rights reserved
Resumo:
A literature survey and a theoretical study were performed to characterize residential chimney conditions for flue gas flow measurements. The focus is on Pitot-static probes to give sufficient basis for the development and calibration of a velocity pressure averaging probe suitable for the continuous dynamic (i.e. non steady state) measurement of the low flow velocities present in residential chimneys. The flow conditions do not meet the requirements set in ISO 10780 and ISO 3966 for Pitot-static probe measurements, and the methods and their uncertainties are not valid. The flow velocities in residential chimneys from a heating boiler under normal operating condi-tions are shown to be so low that they in some conditions result in voiding the assumptions of non-viscous fluid justifying the use of the quadratic Bernoulli equation. A non-linear Reynolds number dependent calibration coefficient that is correcting for the viscous effects is needed to avoid significant measurement errors. The wide range of flow velocity during normal boiler operation also results in the flow type changing from laminar, across the laminar to turbulent transition region, to fully turbulent flow, resulting in significant changes of the velocity profile during dynamic measurements. In addition, the short duct lengths (and changes of flow direction and duct shape) used in practice are shown to result in that the measurements are done in the hydrodynamic entrance region where the flow velocity profiles most likely are neither symmetrical nor fully developed. A measurement method insensitive to velocity profile changes is thus needed, if the flow velocity profile cannot otherwise be determined or predicted with reasonable accuracy for the whole measurement range. Because of particulate matter and condensing fluids in the flue gas it is beneficial if the probe can be constructed so that it can easily be taken out for cleaning, and equipped with a locking mechanism to always ensure the same alignment in the duct without affecting the calibration. The literature implies that there may be a significant time lag in the measurements of low flow rates due to viscous effects in the internal impact pressure passages of Pitot probes, and the significance in the discussed application should be studied experimentally. The measured differential pressures from Pitot-static probes in residential chimney flows are so low that the calibration and given uncertainties of commercially available pressure transducers are not adequate. The pressure transducers should be calibrated specifically for the application, preferably in combination with the probe, and the significance of all different error sources should be investigated carefully. Care should be taken also with the temperature measurement, e.g. with averaging of several sensors, as significant temperature gradients may be present in flue gas ducts.
Resumo:
Laminar forced convection inside tubes of various cross-section shapes is of interest in the design of a low Reynolds number heat exchanger apparatus. Heat transfer to thermally developing, hydrodynamically developed forced convection inside tubes of simple geometries such as a circular tube, parallel plate, or annular duct has been well studied in the literature and documented in various books, but for elliptical duct there are not much work done. The main assumption used in this work is a laminar flow of a power flow inside elliptical tube, under a boundary condition of first kind with constant physical properties and negligible axial heat diffusion (high Peclet number). To solve the thermally developing problem, we use the generalized integral transform technique (GITT), also known as Sturm-Liouville transform. Actually, such an integral transform is a generalization of the finite Fourier transform where the sine and cosine functions are replaced by more general sets of orthogonal functions. The axes are algebraically transformed from the Cartesian coordinate system to the elliptical coordinate system in order to avoid the irregular shape of the elliptical duct wall. The GITT is then applied to transform and solve the problem and to obtain the once unknown temperature field. Afterward, it is possible to compute and present the quantities of practical interest, such as the bulk fluid temperature, the local Nusselt number and the average Nusselt number for various cross-section aspect ratios. (C) 2006 Elsevier. SAS. All rights reserved.
Resumo:
We have studied the effects of L-NG-nitro arginine methyl esther (L-NAME), L-arginine (LAR), inhibitor and a donating nitric oxide agent on the alterations of salivary flow, water intake, arterial blood pressure (MAP) and heart rate (HR) induced by the injection pilocarpine into the subfornical organ (SFO). Rats (Holtzman 250-300 g) were anesthetized with 2, 2, 2-tribromoethanol (20 mg/100 kg b. wt.) and a stainless steel carmula were implanted into their SFO. The volume of injection was 0.2 mu l. The amount of saliva secretion was studied over a 5-min period. Pilocarpine (40 mu g), L-NAME (40 mu g) and LAR (30 mu g) were used in all experiments for the injection into the SFO. Pilocarpine (10, 20, 40, 80 and 160 mu g) injected into SFO elicited a concentration-dependent increase in salivary secretion. L-NAME injected prior to pilocarpine into the SFO increased salivary secretion and water intake due to the effect of pilocarpine. LAR injected prior to pilocarpine into the SFO attenuated the salivary secretion and water intake. Pilocarpine, injected into the SFO increased the MAP and decreased heart rate (HR). L-NAME injected prior to pilocarpine into the SFO potentiated the pressor effect of pilocarpine with a decrease in HR. LAR injected into the SFO prior to pilocarpine attenuated the increase in MAP with no changes in HR. The present study suggests that the SFO nitrergic cells interfere in the cholinergic pathways implicated in the control of salivary secretion, fluid and cardiovascular homeostasis. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)