982 resultados para Protein extract
Resumo:
The ability of E coli recA protein to promote homologous pairing with linear duplex DNA bound to HU protein (Nucleosome cores) was found to be differentially affected. The formation of paranemic joint molecules was not affected whereas the formation of plectomic joint molecules was inhibited from the start of the reaction. The formation of paranemic joint molecules between nucleoprotein filaments of recA protein-circular single stranded DNA and closed circular duplex DNA is believed to generate positive supercoiling in the duplex DNA. We found that the positively superhelical duplex DNA was inert in the formation of joint molecules but could be converted into an active substrate, in situ, by the action of wheat germ topoisomerase I. These observations initiate an understanding of the structural features of E coli chromosome such as DNA supercoiling and nucleosome-like structures in homologous recombination.
Resumo:
In Saccharomyces cerevisiae, transcriptional silencing occurs at the cryptic mating-type loci (HML and HMR), telomeres, and ribosomal DNA ( rDNA; RDN1). Silencing in the rDNA is unusual in that polymerase II (Pol II) promoters within RDN1 are repressed by Sir2 but not Sir3 or Sir4. rDNA silencing unidirectionally spreads leftward, but the mechanism of limiting its spreading is unclear. We searched for silencing barriers flanking the left end of RDN1 by using an established assay for detecting barriers to HMR silencing. Unexpectedly, the unique sequence immediately adjacent to RDN1, which overlaps a prominent cohesin binding site (CARL2), did not have appreciable barrier activity. Instead, a fragment located 2.4 kb to the left, containing a tRNA(Gln) gene and the Ty1 long terminal repeat, had robust barrier activity. The barrier activity was dependent on Pol III transcription of tRNA(Gln), the cohesin protein Smc1, and the SAS1 and Gcn5 histone acetyltransferases. The location of the barrier correlates with the detectable limit of rDNA silencing when SIR2 is overexpressed, where it blocks the spreading of rDNA heterochromatin. We propose a model in which normal Sir2 activity results in termination of silencing near the physical rDNA boundary, while tRNA(Gln) blocks silencing from spreading too far when nucleolar Sir2 pools become elevated.
Resumo:
Rinderpest virus (RPV) large (L) protein is an integral part of the ribonucleoprotein (RNP) complex of the virus that is responsible for transcription and replication of the genome. Previously, we have shown that recombinant L protein coexpressed along with P protein (as the L-P complex) catalyses the synthesis of all viral mRNAs in vitro and the abundance of mRNAs follows a gradient of polarity, similar to the occurrence in vivo. In the present work, we demonstrate that the viral mRNAs synthesized in vitro by the recombinant L or purified RNP are capped and methylated at the N-7 guanine position. RNP from the purified virions, as well as recombinant L protein, shows RNA triphosphatase (RTPase) and guanylyl transferase (GT) activities. L protein present in the RNP complex catalyses the removal of gamma-phosphate from triphosphate-ended 25 nt RNA generated in vitro representing the viral N-terminal mRNA 5' sequence. The L protein forms a covalent enzyme-guanylate intermediate with the GMP moiety of GTP, whose formation is inhibited by the addition of pyrophosphate; thus, it exhibits characteristics of cellular GTs. The covalent bond between the enzyme and nucleotide is acid labile and alkali stable, indicating the presence of phosphoamide linkage. The C-terminal region (aa 1717-2183) of RPV L protein alone exhibits the first step of GT activity needed to form a covalent complex with GMP, though it lacks the ability to transfer GMP to substrate RNA. Here, we describe the biochemical characterization of the newly found RTPase/GT activity of L protein.
Resumo:
Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis. However, the molecular machinery that mediates its function is not yet fully understood. Therefore, structural studies were carried out on the acyl-ACP intermediates of Plasmodium falciparum using NMR as a spectroscopic probe. Chemical shift perturbation studies put forth a new picture of the interaction of ACP molecule with the acyl chain, namely, the hydrophobic core can protect up to 12 carbon units, and additional carbons protrude out from the top of the hydrophobic cavity. The latter hypothesis stems from chemical shift changes observed in C-alpha and C-beta of Ser-37 in tetradecanoyl-ACP. C-13, N-15-Double-filtered nuclear Overhauser effect (NOE) spectroscopy experiments further substantiate the concept; in octanoyl (C-8)- and dodecanoyl (C-12)-ACP, a long range NOE is observed within the phosphopantetheine arm, suggesting an arch-like conformation. This NOE is nearly invisible in tetradecanoyl (C-14)-ACP, indicating a change in conformation of the prosthetic group. Furthermore, the present study provides insights into the molecular mechanism of ACP expansion, as revealed from a unique side chain-to-backbone hydrogen bond between two fairly conserved residues, Ile-55 HN and Glu-48 O. The backbone amide of Ile-55 HN reports a pK(a) value for the carboxylate, similar to 1.9 pH units higher than model compound value, suggesting strong electrostatic repulsion between helix II and helix III. Charge-charge repulsion between the helices in combination with thrust from inside due to acyl chain would energetically favor the separation of the two helices. Helix III has fewer structural restraints and, hence, undergoes major conformational change without altering the overall-fold of P. falciparum ACP.
Resumo:
Premature delivery is a major cause of neonatal morbidity and mortality. The incidence of premature deliveries has increased around the world. In Finland 5.3%, or about 3,000 children per year are born prematurely, before 37 weeks of gestation. The corresponding figure in the United States is about 13%. The morbidity and mortality are highest among infants delivered before 32 weeks of gestation - about 600 children each year in Finland. Approximately 70% of premature deliveries are unexplained. Preterm delivery can be caused by an asympto-matic infection between uterus and the fetal membranes, such can begin already in early pregnancy. It is difficult to predict preterm delivery, and many patients are therefore unnecessarily admitted to hospital for observation and exposed to medical treatments. On the other hand, the high risk women should be identified early for the best treatment of the mother and preterm infant. --- In the prospective study conducted at the Department of Obstetric and Gynecology, Helsinki University Central Hospital two biochemical inflammation related markers were measured in the lower genital tract fluids of asymp-tomatic women in early and mid pregnancy in an order to see whether these markers could identify women with an increased risk of preterm delivery. These biomarkers were phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) and matrix metalloproteinase-8 (MMP-8). The study involved 5180 asymptomatic pregnant women, examined during the first and second ultrasound screening visits. The study samples were taken from the vagina and cervicix. In addition, 246 symptomatic women were studied (pregnancy weeks 22 – 34). The study showed that increased phIGFBP-1 concentration in cervical canal fluid in early pregnancy increased the risk for preterm delivery. The risk for very premature birth (before 32 weeks of gestation) was nearly four-fold. Low MMP-8 concentration in mid pregnancy increased the risk of subsequent premature preterm rupture of fetal membranes (PPROM). Significantly high MMP-8 concentrations in the cervical fluid increased the risk for prema-ture delivery initiated by preterm labour with intact membranes. Among women with preterm contractions the shortened cervical length measured by ultrasound and elevated cervical fluid phIGFBP-1 both predicted premature delivery. In summary, because of the relatively low sensitivity of cervical fluid phIGFBP-1 this biomarker is not suitable for routine screening, but provides an additional tool in assessing the risk of preterm delivery. Cervical fluid MMP-8 is not useful in early or mid pregnancy in predicting premature delivery because of its dual role. Further studies on the role of MMP-8 are therefore needed. Our study confirms that phIGFBP-1 testing is useful in predicting pre-term delivery.
Resumo:
We demonstrate the presence of nonstructural protein 1 (NS1)-specific antibodies in a significant proportion of convalescent-phase human serum samples obtained from a cohort in an area where Japanese encephalitis virus (JEV) is endemic. Sera containing antibodies to NS1 but not those with antibodies to other JEV proteins, such as envelope, brought about complement-mediated lysis of JEV-infected BHK-21 cells. Target cells infected with a recombinant poxvirus expressing JEV NS1 on the cell surface confirmed the NS1 specificity of cytolytic antibodies. Mouse anti-NS1 cytolytic sera caused a complement-dependent reduction in virus output from infected human cells, demonstrating their important role in viral control. Antibodies elicited by JEV NS1 did not cross lyse West Nile virus- or dengue virus-infected cells despite immunoprecipitating the NS1 proteins of these related flaviviruses. Additionally, JEV NS1 failed to bind complement factor H, in contrast to NS1 of West Nile virus, suggesting that the NS1 proteins of different flaviviruses have distinctly different mechanisms for interacting with the host. Our results also point to an important role for JEV NS1-specific human immune responses in protection against JE and provide a strong case for inclusion of the NS1 protein in next generation of JEV vaccines.
Resumo:
Nanoconfined synthesized crystalline fullerene mesoporous carbon (C60-FMC) with bimodal pore architectures of 4.95 nm and 10-15 nm pore sizes characterized by XRD, TEM, nitrogen adsorption/ desorption isotherm and solid-state NMR, and the material was used for protein immobilization. The solid-state 13C NMR spectrum of C60-FMC along with XRD, BET and TEM confirms the formation of fullerene mesoporous carbon structure C60-FMC. The immobilization of albumin (from bovine serum, BSA) protein biomolecule in a buffer solution at pH 4.7 was used to determine the adsorption properties of the C60-FMC material and its structural changes investigated by FT-IR. We demonstrated that the C60-FMC with high surface area and pore volumes have excellent adsorption capacity towards BSA protein molecule. Protein adsorption experiments clearly showed that the C60-FMC with bimodal pore architectures (4.95 nm and 10-15 nm) are suitable material to be used for protein adsorption
Resumo:
In this paper, the effect of some commonly used antithyroid drugs and their analogues on peroxynitrite-mediated nitration of proteins is described. The nitration of tyrosine residues in bovine serum albumin (BSA) and cytochromec was studied by Western blot analysis. These studies reveal that the antithyroid drugs methimazole (MMI), 6-n-propyl-2-thiouracil (PTU), and 6-methyl-2-thiouracil (MTU), which contain thione moieties, significantly reduce the tyrosine nitration of both BSA and cytochrome c. While MMI exhibits good peroxynitrite (PN) scavenging activity, the thiouracil compounds PTU and MTU are slightly less effective than MMI. The S- and Se-methylated compounds show a weak inhibitory effect in the nitration of tyrosine, indicating that the presence of a thione or selone moiety is important for an efficient inhibition. Similarly, the replacement of N-H moiety in MMI by N-methyl or N-m-methoxybenzyl substituents dramatically reduces the antioxidant activity of the parent compound. Theoretical studies indicate that the substitution of N-H moiety by N-Me significantly increases the energy required for the oxidation of sulfur center by PN. However, such substitution in the selenium analogue of MMI increases the activity of parent compound. This is due to the facile oxidation of the selone moiety to the corresponding selenenic and seleninic acids. Unlike N,N'-disubstituted thiones, the corresponding selones efficiently scavenge PN, as they predominantly exist in their zwitterionic forms in which the selenium atom carries a large negative charge.
Resumo:
Ion pairs contribute to several functions including the activity of catalytic triads, fusion of viral membranes, stability in thermophilic proteins and solvent-protein interactions. Furthermore, they have the ability to affect the stability of protein structures and are also a part of the forces that act to hold monomers together. This paper deals with the possible ion pair combinations and networks in 25% and 90% non-redundant protein chains. Different types of ion pairs present in various secondary structural elements are analysed. The ion pairs existing between different subunits of multisubunit protein structures are also computed and the results of various analyses are presented in detail. The protein structures used in the analysis are solved using X-ray crystallography, whose resolution is better than or equal to 1.5 angstrom and R-factor better than or equal to 20%. This study can, therefore, be useful for analyses of many protein functions. It also provides insights into the better understanding of the architecture of protein structure.
Resumo:
In atherosclerosis, cholesterol accumulates in the vessel wall, mainly in the form of modified low-density lipoprotein (LDL). Macrophages of the vessel wall scavenge cholesterol, which leads to formation of lipid-laden foam cells. High plasma levels of high-density lipoprotein (HDL) protect against atherosclerosis, as HDL particles can remove peripheral cholesterol and transport it to the liver for excretion in a process called reverse cholesterol transport (RCT). Phospholipid transfer protein (PLTP) remodels HDL particles in the circulation, generating prebeta-HDL and large fused HDL particles. In addition, PLTP maintains plasma HDL levels by facilitating the transfer of post-lipolytic surface remnants of triglyceride-rich lipoproteins to HDL. Most of the cholesteryl ester transfer protein (CETP) in plasma is bound to HDL particles and CETP is also involved in the remodeling of HDL particles. CETP enhances the heteroexchange of cholesteryl esters in HDL particles for triglycerides in LDL and very low-density lipoprotein (VLDL). The aim of this thesis project was to study the importance of endogenous PLTP in the removal of cholesterol from macrophage foam cells by using macrophages derived from PLTP-deficient mice, determine the effect of macrophage-derived PLTP on the development of atherosclerosis by using bone marrow transplantation, and clarify the role of the two forms of PLTP, active and inactive, in the removal of cholesterol from the foam cells. In addition, the ability of CETP to protect HDL against the action of chymase was studied. Finally, cholesterol efflux potential of sera obtained from the study subjects was compared. The absence of PLTP in macrophages derived from PLTP-deficient mice decreased cholesterol efflux mediated by ATP-binding cassette transporter A1. The bone marrow transplantation studies showed that selective deficiency of PLTP in macrophages decreased the size of atherosclerotic lesions and caused major changes in serum lipoprotein levels. It was further demonstrated that the active form of PLTP can enhance cholesterol efflux from macrophage foam cells through generation of prebeta-HDL and large fused HDL particles enriched with apoE and phospholipids. Also CETP may enhance the RCT process, as association of CETP with reconstituted HDL particles prevented chymase-dependent proteolysis of these particles and preserved their cholesterol efflux potential. Finally, serum from high-HDL subjects promoted more efficient cholesterol efflux than did serum derived from low-HDL subjects which was most probably due to differences in the distribution of HDL subpopulations in low-HDL and high-HDL subjects. These studies described in this thesis contribute to the understanding of the PLTP/CETP-associated mechanisms underlying RCT.
Resumo:
The feasibility of utilizing mesoporous matrices of alumina and silica for the inhibition of enzymatic activity is presented here. These studies were performed on a protein tyrosine phosphatase by the name chick retinal tyrosine phosphotase-2 (CRYP-2), a protein that is identical in sequence to the human glomerular epithelial protein-1 and involved in hepatic carcinoma. The inhibition of CRYP-2 is of tremendous therapeutic importance. Inhibition of catalytic activity was examined using the Sustained delivery of p-nitrocatechol sulfate (pNCS) from bare and amine functionalized mesoporous silica (MCM-48) and mesoporous alumina (Al2O3). Among the various mesoporous matrices employed, amine functionalized MCM-48 exhibited the best release of pNCS and also inhibition of CRYP-2. The maximum speed of reaction nu(max) (= 160 +/- 10 mu mol/mnt/mg) and inhibition constant K-i (=85.0 +/- 5.0 mu mol) estimated using a competitive inhibition model were Found to be very similar to inhibition activities of protein tyrosine phosphatases using other methods.
Resumo:
Owing to widespread applications, synthesis and characterization of silver nanoparticles is recently attracting considerable attention. Increasing environmental concerns over chemical synthesis routes have resulted in attempts to develop biomimetic approaches. One of them is synthesis using plant parts, which eliminates the elaborate process of maintaining the microbial culture and often found to be kinetically favourable than other bioprocesses. The present study deals with investigating the effect of process variables like reductant concentrations, reaction pH, mixing ratio of the reactants and interaction time on the morphology and size of silver nanoparticles synthesized using aqueous extract of Azadirachta indica (Neem) leaves. The formation of crystalline silver nanoparticles was confirmed using X-ray diffraction analysis. By means of UV spectroscopy, Scanning and Transmission Electron Microscopy techniques, it was observed that the morphology and size of the nanoparticles were strongly dependent on the process parameters. Within 4 h interaction period, nanoparticles below 20-nm-size with nearly spherical shape were produced. On increasing interaction time (ageing) to 66 days, both aggregation and shape anisotropy (ellipsoidal, polyhedral and capsular) of the particles increased. In alkaline pH range, the stability of cluster distribution increased with a declined tendency for aggregation of the particles. It can be inferred from the study that fine tuning the bioprocess parameters will enhance possibilities of desired nano-product tailor made for particular applications.