949 resultados para Proof.
Resumo:
A novel, micro-shock wave responsive spermidine and dextran sulfate microparticle was developed. Almost 90% of the drug release was observed when the particles were exposed to micro-shock waves 5 times. Micro-shock waves served two purposes; of releasing the antibiotic from the system and perhaps disrupting the S. aureus biofilm in the skin infection model. A combination of shock waves with ciprofloxacin loaded microparticles could completely cure the S. aureus infection lesion in a diabetic mouse model. As a proof of concept insulin release was triggered using micro-shock waves in diabetic mice to reduce the blood glucose level. Insulin release could be triggered for at least 3 days by exposing subcutaneously injected insulin loaded particles.
Resumo:
DNA sequence and structure play a key role in imparting fragility to different regions of the genome. Recent studies have shown that non-B DNA structures play a key role in causing genomic instability, apart from their physiological roles at telomeres and promoters. Structures such as G-quadruplexes, cruciforms, and triplexes have been implicated in making DNA susceptible to breakage, resulting in genomic rearrangements. Hence, techniques that aid in the easy identification of such non-B DNA motifs will prove to be very useful in determining factors responsible for genomic instability. In this study, we provide evidence for the use of primer extension as a sensitive and specific tool to detect such altered DNA structures. We have used the G-quadruplex motif, recently characterized at the BCL2 major breakpoint region as a proof of principle to demonstrate the advantages of the technique. Our results show that pause sites corresponding to the non-B DNA are specific, since they are absent when the G-quadruplex motif is mutated and their positions change in tandem with that of the primers. The efficiency of primer extension pause sites varied according to the concentration of monovalant cations tested, which support G-quadruplex formation. Overall, our results demonstrate that primer extension is a strong in vitro tool to detect non-B DNA structures such as G-quadruplex on a plasmid DNA, which can be further adapted to identify non-B DNA structures, even at the genomic level.
Resumo:
We extend a well-known result, about the unit ball, by H. Alexander to a class of balanced domains in . Specifically: we prove that any proper holomorphic self-map of a certain type of balanced, finite-type domain in , is an automorphism. The main novelty of our proof is the use of a recent result of Opshtein on the behaviour of the iterates of holomorphic self-maps of a certain class of domains. We use Opshtein's theorem, together with the tools made available by finiteness of type, to deduce that the aforementioned map is unbranched. The monodromy theorem then delivers the result.
Resumo:
Conditions for the existence of heterochromatic Hamiltonian paths and cycles in edge colored graphs are well investigated in literature. A related problem in this domain is to obtain good lower bounds for the length of a maximum heterochromatic path in an edge colored graph G. This problem is also well explored by now and the lower bounds are often specified as functions of the minimum color degree of G - the minimum number of distinct colors occurring at edges incident to any vertex of G - denoted by v(G). Initially, it was conjectured that the lower bound for the length of a maximum heterochromatic path for an edge colored graph G would be 2v(G)/3]. Chen and Li (2005) showed that the length of a maximum heterochromatic path in an edge colored graph G is at least v(G) - 1, if 1 <= v(G) <= 7, and at least 3v(G)/5] + 1 if v(G) >= 8. They conjectured that the tight lower bound would be v(G) - 1 and demonstrated some examples which achieve this bound. An unpublished manuscript from the same authors (Chen, Li) reported to show that if v(G) >= 8, then G contains a heterochromatic path of length at least 120 + 1. In this paper, we give lower bounds for the length of a maximum heterochromatic path in edge colored graphs without small cycles. We show that if G has no four cycles, then it contains a heterochromatic path of length at least v(G) - o(v(G)) and if the girth of G is at least 4 log(2)(v(G)) + 2, then it contains a heterochromatic path of length at least v(G) - 2, which is only one less than the bound conjectured by Chen and Li (2005). Other special cases considered include lower bounds for the length of a maximum heterochromatic path in edge colored bipartite graphs and triangle-free graphs: for triangle-free graphs we obtain a lower bound of 5v(G)/6] and for bipartite graphs we obtain a lower bound of 6v(G)-3/7]. In this paper, it is also shown that if the coloring is such that G has no heterochromatic triangles, then G contains a heterochromatic path of length at least 13v(G)/17)]. This improves the previously known 3v(G)/4] bound obtained by Chen and Li (2011). We also give a relatively shorter and simpler proof showing that any edge colored graph G contains a heterochromatic path of length at least (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We revisit a problem studied by Padakandla and Sundaresan SIAM J. Optim., August 2009] on the minimization of a separable convex function subject to linear ascending constraints. The problem arises as the core optimization in several resource allocation problems in wireless communication settings. It is also a special case of an optimization of a separable convex function over the bases of a specially structured polymatroid. We give an alternative proof of the correctness of the algorithm of Padakandla and Sundaresan. In the process we relax some of their restrictions placed on the objective function.
Resumo:
Morphological changes in cells associated with disease states are often assessed using clinical microscopy. However, the changes in chemical composition of cells can also be used to detect disease conditions. Optical absorption measurements carried out on single cells using inexpensive sources, detectors can help assess the chemical composition of cells; thereby enable detection of diseases. In this article, we present a novel technique capable of simultaneously detecting changes in morphology and chemical composition of cells. The presented technique enables characterization of optical absorbance-based methods against microscopy for detection of disease states. Using the technique, we have been able to achieve a throughput of about 1000 cells per second. We demonstrate the proof-of-principle by detecting malaria in a given blood sample. The presented technique is capable of detecting very lower levels of parasitemia within time scales comparable to antigen-based rapid diagnostic tests.
Resumo:
A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse `off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting ``out'' in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the `proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector.
Resumo:
Executing authenticated computation on outsourced data is currently an area of major interest in cryptology. Large databases are being outsourced to untrusted servers without appreciable verification mechanisms. As adversarial server could produce erroneous output, clients should not trust the server's response blindly. Primitive set operations like union, set difference, intersection etc. can be invoked on outsourced data in different concrete settings and should be verifiable by the client. One such interesting adaptation is to authenticate email search result where the untrusted mail server has to provide a proof along with the search result. Recently Ohrimenko et al. proposed a scheme for authenticating email search. We suggest significant improvements over their proposal in terms of client computation and communication resources by properly recasting it in two-party settings. In contrast to Ohrimenko et al. we are able to make the number of bilinear pairing evaluation, the costliest operation in verification procedure, independent of the result set cardinality for union operation. We also provide an analytical comparison of our scheme with their proposal which is further corroborated through experiments.
Resumo:
Minimal crystallizations of simply connected PL 4-manifolds are very natural objects. Many of their topological features are reflected in their combinatorial structure which, in addition, is preserved under the connected sum operation. We present a minimal crystallization of the standard PL K3 surface. In combination with known results this yields minimal crystallizations of all simply connected PL 4-manifolds of ``standard'' type, that is, all connected sums of CP2, S-2 x S-2, and the K3 surface. In particular, we obtain minimal crystallizations of a pair of homeomorphic but non-PL-homeomorphic 4-manifolds. In addition, we give an elementary proof that the minimal 8-vertex crystallization of CP2 is unique and its associated pseudotriangulation is related to the 9-vertex combinatorial triangulation of CP2 by the minimum of four edge contractions.
Resumo:
In this text we present the design of a wearable health monitoring device capable of remotely monitoring health parameters of neonates for the first few weeks after birth. The device is primarily aimed at continuously tracking the skin temperature to indicate the onset of hypothermia in newborns. A medical grade thermistor is responsible for temperature measurement and is directly interfaced to a microcontroller with an integrated bluetooth low energy radio. An inertial sensor is also present in the device to facilitate breathing rate measurement which has been discussed briefly. Sensed data is transferred securely over bluetooth low energy radio to a nearby gateway, which relays the information to a central database for real time monitoring. Low power optimizations at both the circuit and software levels ensure a prolonged battery life. The device is packaged in a baby friendly, water proof housing and is easily sterilizable and reusable.
Resumo:
Helmke et al. have recently given a formula for the number of reachable pairs of matrices over a finite field. We give a new and elementary proof of the same formula by solving the equivalent problem of determining the number of so called zero kernel pairs over a finite field. We show that the problem is, equivalent to certain other enumeration problems and outline a connection with some recent results of Guo and Yang on the natural density of rectangular unimodular matrices over F-qx]. We also propose a new conjecture on the density of unimodular matrix polynomials. (C) 2016 Elsevier Inc. All rights reserved.
Resumo:
We show that an electrically soft ferroelectric host can be used to tune the photoluminescence (PL) response of rare-earth emitter ions by external electric field. The proof of this concept is demonstrated by changing the PL response of the Eu3+ ion by electric field on a model system Eu-doped 0.94(Na1/2Bi1/2TiO3)-0.06(BaTiO3). We also show that new channels of radiative transitions, forbidden otherwise, open up due to positional disorder in the system, which can as well be tuned by electric field.
Resumo:
An experimental investigation of the stabilization of the turquoise-colored chrornophore (Mn5+O4) in various oxide hosts, viz., A(3)(VO4)(2) (A = Ba, Sr, Ca), YVO4, and Ba2MO4 (M = Ti, Si), has been carried out. The results reveal that substitution of Mn5+O4 occurs in Ba-3(VO4)(2) forming the entire solid solution series Ba-3(V1-x MnxO4)(2) (0 < x <= 1.0), while with the corresponding strontium derivative, only up to about 10% of Mn5+O4 substitution is possible. Ca-3(VO4)(2) and YVO4 do not stabilize Mn5+O4 at all. With Ba2MO4 (M = Ti, Si), we could prepare only partially substituted materials, Ba2M1-xMn5+O4+x/2 for x up to 0.15, that are turquoise-colored. We rationalize the results that a large stabilization of the O 2p-valence band states occurs in the presence of the electropositive barium that renders the Mn5+ oxidation state accessible in oxoanion compounds containing PO43-, VO43-, etc. By way of proof-of-concept, we synthesized new turquoise-colored Mn5+O4 materials, Ba-5(BO3)(MnO4)(2)Cl and Ba-5(BO3)(PO4)(MnO4)Cl, based on the apatite-Ba-5(PO4)(3)Cl-structure.
Resumo:
There is increased interest in measuring kinetic rates, lifetimes, and rupture forces of single receptor/ligand bonds. Valuable insights have been obtained from previous experiments attempting such measurements. However, it remains difficult to know with sufficient certainty that single bonds were indeed measured. Using exemplifying data, evidence supporting single-bond observation is examined and caveats in the experimental design and data interpretation are identified. Critical issues preventing definitive proof and disproof of single-bond observation include complex binding schemes, multimeric interactions, clustering, and heterogeneous surfaces. It is concluded that no single criterion is sufficient to ensure that single bonds are actually observed. However, a cumulative body of evidence may provide reasonable confidence. 0 2002 Biomedical Engineering Society.
Resumo:
We describe developments in the integration of analyte specific holographic sensors into PDMS-based microfluidic devices for the purpose of continuous, low-impact monitoring of extra-cellular change in micro-bioreactors. Holographic sensors respond to analyte concentration via volume change, which makes their reduction in size and integration into spatially confined fluidics difficult. Through design and process modification many of these constraints have been addressed, and a microfluidics-based device capable of real-time monitoring of the pH change caused by Lactobacillus casei fermentation is presented as a general proof-of-concept for a wide array of possible devices.