960 resultados para Projection Neurons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular uptake of di- and tripeptides has been characterized in numerous organisms, and various transporters have been identified. In contrast, structural information on peptide transporters is very sparse. Here, we have cloned, overexpressed, purified, and biochemically characterized DtpD (YbgH) from Escherichia coli, a prokaryotic member of the peptide transporter family. Its homologues in mammals, PEPT1 (SLC15A1) and PEPT2 (SLC15A2), not only transport peptides but also are of relevance for uptake of drugs as they accept a large spectrum of peptidomimetics such as beta-lactam antibiotics, antivirals, peptidase inhibitors, and others as substrates. Uptake experiments indicated that DtpD functions as a canonical peptide transporter and is, therefore, a valid model for structural studies of this family of proteins. Blue native polyacrylamide gel electrophoresis, gel filtration, and transmission electron microscopy of single-DtpD particles suggest that the transporter exists in a monomeric form when solubilized in detergent. Two-dimensional crystallization of DtpD yielded first tubular crystals that allowed the determination of a projection structure at better than 19 A resolution. This structure of DtpD represents the first structural view of a member of the peptide transporter family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free-floating roller tube cultures of human fetal (embryonic age 6-10 weeks post-conception) and rat fetal (embryonic day 13) ventral mesencephalon were prepared. After 7-15 days in vitro, the mesencephalic tissue cultures were transplanted into the striatum of adult rats that had received unilateral injections of 6-hydroxydopamine into the nigrostriatal bundle 3-5 weeks prior to transplantation. Graft survival was assessed in tyrosine hydroxylase (TH)-immunostained serial sections of the grafted brains up to post-transplantation week 4 for the human fetal xenografts and post-transplantation week 11 for the rat fetal allografts. D-amphetamine-induced rotation was monitored up to 10 weeks after transplantation in the allografted animals and compared with that of lesioned-only control animals. All transplanted animals showed large, viable grafts containing TH-immunoreactive (ir) neurons. The density of TH-ir neurons in the human fetal xenografts and in rat fetal allografts was similar. A significant amelioration of the amphetamine-induced rotation was observed in the animals that received cultured tissue allografts. These results promote the feasibility of in vitro maintenance of fetal human and rat nigral tissue prior to transplantation using the free-floating roller tube technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons in Action (NIA1, 2000; NIA1.5, 2004; NIA2, 2007), a set of tutorials and linked simulations, is designed to acquaint students with neuronal physiology through interactive, virtual laboratory experiments. Here we explore the uses of NIA in lecture, both interactive and didactic, as well as in the undergraduate laboratory, in the graduate seminar course, and as an examination tool through homework and problem set assignments. NIA, made with the simulator NEURON (http://www.neuron.yale.edu/neuron/), displays voltages, currents, and conductances in a membrane patch or signals moving within the dendrites, soma and/or axon of a neuron. Customized simulations start with the plain lipid bilayer and progress through equilibrium potentials; currents through single Na and K channels; Na and Ca action potentials; voltage clamp of a patch or a whole neuron; voltage spread and propagation in axons, motoneurons and nerve terminals; synaptic excitation and inhibition; and advanced topics such as channel kinetics and coincidence detection. The user asks and answers "what if" questions by specifying neuronal parameters, ion concentrations, and temperature, and the experimental results are then plotted as conductances, currents, and voltage changes. Such exercises provide immediate confirmation or refutation of the student's ideas to guide their learning. The tutorials are hyperlinked to explanatory information and to original research papers. Although the NIA tutorials were designed as a sequence to empower a student with a working knowledge of fundamental neuronal principles, we find that faculty are using the individual tutorials in a variety of educational situations, some of which are described here. Here we offer ideas to colleagues using interactive software, whether NIA or another tool, for educating students of differing backgrounds in the subject of neurophysiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complexity of the equine skull makes the temporomandibular joint a difficult area to evaluate radiographically. The goal of this study was to determine the optimal angle for a complementary radiographic projection of the equine temporomandibular joint based on a computed tomography (CT) cadaver study. CT was performed on six equine cadaver heads of horses that were euthanized for other reasons than temporomandibular joint disease. After the CT examination, 3D reconstruction of the equine skull was performed to subjectively determine the angle for a complementary radiographic projection of the temporomandibular joint. The angle was measured on the left and right temporomandibular joint of each head. Based on the measurements obtained from the CT images, a radiographic projection of the temporomandibular joint in a rostra-145 degrees ventral-caudodorsal oblique (R45 degrees V-CdDO) direction was developed by placing the X-ray unit 30 degrees laterally, maintaining at the same time the R45 degrees V-CdDO angle (R45 degrees V30 degrees L-CdDLO). This radiographic projection was applied to all cadaver heads and on six live horses. In three of the live horses abnormal findings associated with the temporomandibular joint were detected. We conclude that this new radiographic projection of the temporomandibular joint provides superior visualization of the temporomandibular joint space and the articular surface of the mandibular condyle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Population coding is widely regarded as a key mechanism for achieving reliable behavioral decisions. We previously introduced reinforcement learning for population-based decision making by spiking neurons. Here we generalize population reinforcement learning to spike-based plasticity rules that take account of the postsynaptic neural code. We consider spike/no-spike, spike count and spike latency codes. The multi-valued and continuous-valued features in the postsynaptic code allow for a generalization of binary decision making to multi-valued decision making and continuous-valued action selection. We show that code-specific learning rules speed up learning both for the discrete classification and the continuous regression tasks. The suggested learning rules also speed up with increasing population size as opposed to standard reinforcement learning rules. Continuous action selection is further shown to explain realistic learning speeds in the Morris water maze. Finally, we introduce the concept of action perturbation as opposed to the classical weight- or node-perturbation as an exploration mechanism underlying reinforcement learning. Exploration in the action space greatly increases the speed of learning as compared to exploration in the neuron or weight space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite efforts implicating the cationic channel transient receptor potential melastatin member 4 (TRPM4) to cardiac, nervous, and immunological pathologies, little is known about its structure and function. In this study, we optimized the requirements for purification and extraction of functional human TRPM4 protein and investigated its supra-molecular assembly. We selected the Xenopus laevis oocyte expression system because it lacks endogenous TRPM4 expression, it is known to overexpress functional human membrane channels, can be used for structure-function analysis within the same system, and is easily scaled to improve yield and develop moderate throughput capabilities through the use of robotics. Negative-stain electron microscopy (EM) revealed various sized low-resolution particles. Single particle analysis identified the majority of the projections represented the monomeric form with additional oligomeric structures potentially characterized as tetramers. Two-electrode voltage clamp electrophysiology demonstrated that human TRPM4 is functionally expressed at the oocyte plasma membrane. This study opens the door for medium-throughput screening and structure-function determination of this important therapeutically relevant target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The flower gene has been previously linked to the elimination of slow dividing epithelial cells during development in a process known as "cell competition." During cell competition, different isoforms of the Flower protein are displayed at the cell membrane and reveal the reduced fitness of slow proliferating cells, which are therefore recognized, eliminated, and replaced by their normally dividing neighbors. This mechanism acts as a "cell quality" control in proliferating tissues. RESULTS: Here, we use the Drosophila eye as a model to study how unwanted neurons are culled during retina development and find that flower is required and sufficient for the recognition and elimination of supernumerary postmitotic neurons, contained within incomplete ommatidia units. This constitutes the first description of the "Flower Code" functioning as a cell selection mechanism in postmitotic cells and is also the first report of a physiological role for this cell quality control machinery. CONCLUSIONS: Our results show that the "Flower Code" is a general system to reveal cell fitness and that it may play similar roles in creating optimal neural networks in higher organisms. The Flower Code seems to be a more general mechanism for cell monitoring and selection than previously recognized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The myelin-associated protein Nogo-A and its receptor Nogo-receptor 1 (NgR1) are known as potent growth inhibitors of the adult central nervous system (CNS). Nogo-A is mostly expressed on the surface of oligodendrocytes, but is also found in neurons of the adult and developing CNS. This observation suggests that Nogo-A serves additional functions in the brain. Hence, in the present study, we investigated the effects of antagonizing NgR1 on cultured organotypic and dissociated dopaminergic neurons. For that purpose ventral mesencephalic cultures from E14 rat embryos were grown in absence or presence of the NgR1 antagonist NEP1-40 for 1 week. Treatment with NEP1-40 significantly increased cell densities of tyrosine hydroxylase-immunoreactive neurons. Moreover, organotypic ventral mesencephalic cultures displayed a significantly bigger volume after NEP1-40 treatment. Morphological analysis of tyrosine hydroxylase-positive neurons disclosed longer neurites and higher numbers of primary neurites in dissociated cultures incubated with NEP1-40, whereas soma size was not changed. In conclusion, our findings demonstrate that interfering with Nogo-A signaling by antagonizing NgR1 modulates dopaminergic neuron properties during development. These observations highlight novel aspects of the role of Nogo-A in the CNS and might have an impact in the context of Parkinson's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoscopic 3D imaging has become a widely used optical imaging technique to visualize intact biological specimens. Selective plane illumination microscopy (SPIM) visualizes samples up to a centimeter in size with micrometer resolution by 3D data stitching but is limited to fluorescent contrast. Optical projection tomography (OPT) works with fluorescent and nonfluorescent contrasts, but its resolution is limited in large samples. We present a hybrid setup (OPTiSPIM) combining the advantages of each technique. The combination of fluorescent and nonfluorescent high-resolution 3D data into integrated datasets enables a more extensive representation of mesoscopic biological samples. The modular concept of the OPTiSPIM facilitates incorporation of the transmission OPT modality into already established light sheet based imaging setups.