934 resultados para Pressure field distribution
Resumo:
This paper describes the effect of the state of the inlet boundary layer (laminar or turbulent) on the structure of the endwall flow on two different profiles of low-pressure (LP) turbine blades (solid thin and hollow thick). At present the state of the endwall boundary layer at the inlet of a real LP turbine is not known. The intention of this paper is to show that, for different designs of LP turbine, the state of the inlet boundary layer affects the performance of the blade in very different ways. The testing was completed at low speed in a linear cascade using area traversing, flow visualization and static pressure measurements. The paper shows that, for a laminar inlet boundary layer, the two profiles have a similar loss distribution and structure of endwall flow. However, for a turbulent inlet boundary layer the two profiles are shown to differ significantly in both the total loss and endwall flow structure. The pressure side separation bubble on the solid thin profile is shown to interact with the passage vortex, causing a higher endwall loss than that measured on the hollow thick profile.
The unsteady development of a turbulent wake through a downstream low-pressure turbine blade passage
Resumo:
This paper presents two-dimensional LDA measurements of the convection of a wake through a low-pressure (LP) turbine cascade. Previous studies have shown the wake convection to be kinematic but have not provided details of the turbulent field. The spatial resolution of these measurements has facilitated the calculation of the production of turbulent kinetic energy and this has revealed a mechanism for turbulence production as the wake converts through the bladerow. The measured ensemble-averaged velocity field confirmed the previously reported kinematics of wake convection while the measurements of the turbulence quantities showed the wake fluid to be characterised by elevated levels of turbulent kinetic energy (TKE) and to have an anisotropic structure. Based on the measured mean and turbulence quantities, the production of turbulent kinetic energy was calculated. This highlighted a TKE production mechanism that resulted in increased levels of turbulence over the rear suction surface where boundary layer transition occurs. The turbulence production mechanism within the bladerow was also observed to produce more nearly isotropic turbulence. Production occurs when the principal stresses within the wake are aligned with the mean strains. This coincides with the maximum distortion of the wake within the blade passage and provides a mechanism for the production of turbulence outside of the boundary layer.
Resumo:
This paper presents a study of the three-dimensional flow field within the blade rows of a high-pressure axial flow steam turbine stage. Half-delta wings were fixed to a rotating hub to simulate an upstream rotor passage vortex. The flow field is investigated in a Low-Speed Research Turbine using pneumatic and hot-wire probes downstream of the blade row. The paper examines the impact of the delta wing vortex transport on the performance of the downstream blade row. Steady and unsteady numerical simulations were performed using structured 3D Navier-Stokes solver to further understand the flow field. The loss measurements at the exit of the stator blade showed an increase in stagnation pressure loss due to the delta wing vortex transport. The increase in loss was 21% of the datum stator loss, demonstrating the importance of this vortex interaction. The transport of the stator viscous flow through the rotor blade row is also described. The rotor exit flow was affected by the interaction between the enhanced stator passage vortex and the rotor blade row. Flow underturning near the hub and overturning towards the mid-span was observed, contrary to the classical model of overturning near the hub and underturning towards the mid-span. The unsteady numerical simulation results were further analysed to identify the entropy producing regions in the unsteady flow field.
Resumo:
This paper describes a program of work, largely experimental, which was undertaken with the objective of developing an improved blade profile for the low-pressure turbine in aero-engine applications. Preliminary experiments were conducted using a novel technique. An existing cascade of datum blades was modified to enable the pressure distribution on the suction surface of one of the blades to be altered. Various means, such as shaped inserts, an adjustable flap at the trailing edge, and changing stagger were employed to change the geometry of the passage. These experiments provided boundary layer and lift data for a wide range of suction surface pressure distributions. The data was then used as a guide for the development of new blade profiles. The new blade profiles were then investigated in a low-speed cascade that included a set of moving bars upstream of the cascade of blades to simulate the effect of the incoming wakes from the previous blade row in a multistage turbine environment.
Resumo:
A simple and cheap procedure for flexible electronics fabrication was demonstrated by imprinting metallic nanoparticles (NPs) on flexible substrates. Silver NPs with an average diameter of 10 nm were prepared via an improved chemical approach and Ag Np ink was produced in α-terpineol with a concentration up to 15%. Silver micro/nanostructures with a dimension varying from nanometres to microns were produced on a flexible substrate (polyimide) by imprinting the as-prepared silver ink. The fine fluidic properties of an Ag NP/α-terpineol solution and low melting temperatures of silver nanoparticles render a low pressure and low temperature procedure, which is well suited for flexible electronics fabrication. The effects of sintering and mechanical bending on the conductivity of imprinted silver contacts were also investigated. Large area organic field effect transistors (OFET) on flexible substrates were fabricated using an imprinted silver electrode and semiconducting polymer. The OFET with silver electrodes imprinted from our prepared oleic acid stabilized Ag nanoparticle ink show an ideal ohmic contact; therefore, the OFET exhibit high performance (Ion/Ioff ratio: 1 × 103; mobility: 0.071 cm2 V-1 s-1). © 2010 IOP Publishing Ltd.
Resumo:
A parametric set of velocity distributions has been investigated using a flat plate experiment. Three different diffusion factors and peak velocity locations were tested. These were designed to mimic the suction surfaces of Low Pressure (LP) turbine blades. Unsteady wakes, inherent in real turbomachinery flows, were generated using a moving bar mechanism. A turbulence grid generated a freestream turbulence level that is believed to be typical of LP turbines. Measurements were taken across a Reynolds number range of 50,000-220,000 at three reduced frequencies (0.314, 0.628, 0.942). Boundary layer traverses were performed at the nominal trailing edge using a Laser Doppler Anemometry system and hot-films were used to examine the boundary layer behaviour along the surface. For every velocity distribution tested, the boundary layer separated in the diffusing flow downstream of the peak velocity. The loss production is dominated by the mixing in the reattachment process, mixing in the turbulent boundary layer downstream of reattachment and the effects of the unsteady interaction between the wakes and the boundary layer. A sensitive balance governs the optimal location of peak velocity on the surface. Moving the velocity peak forwards on the blade was found to be increasingly beneficial when bubblegenerated losses are high, i.e. at low Reynolds number, at low reduced frequency and at high levels of diffusion. Copyright © 2008 by ASME.
Resumo:
Water service providers (WSPs) in the UK have statutory obligations to supply drinking water to all customers that complies with increasingly stringent water quality regulations and minimum flow and pressure criteria. At the same time, the industry is required by regulators and investors to demonstrate increasing operational efficiency and to meet a wide range of performance criteria that are expected to improve year-on-year. Most WSPs have an ideal for improving the operation of their water supply systems based on increased knowledge and understanding of their assets and a shift to proactive management followed by steadily increasing degrees of system monitoring, automation and optimisation. The fundamental mission is, however, to ensure security of supply, with no interruptions and water quality of the highest standard at the tap. Unfortunately, advanced technologies required to fully understand, manage and automate water supply system operation either do not yet exist, are only partially evolved, or have not yet been reliably proven for live water distribution systems. It is this deficiency that the project NEPTUNE seeks to address by carrying out research into 3 main areas; these are: data and knowledge management; pressure management (including energy management); and the associated complex decision support systems on which to base interventions. The 3-year project started in April of 2007 and has already resulted in a number of research findings under the three main research priority areas (RPA). The paper summarises in greater detail the overall project objectives, the RPA activities and the areas of research innovation that are being undertaken in this major, UK collaborative study. Copyright 2009 ASCE.
Resumo:
Fishery and biology of the giant trevally, Caranx ignobilis exploited along the Tuticorin coast of Tamilnadu were monitored during 2001-2006. Fishery occurred round the year with peak landings during April-August. Spawning and recruitment occur almost round the year with peak during November-December. Young ones are abundant in shallow coastal waters and as grows, they move to deeper waters. Growth parameters, L"' and K are estimated respectively as 143.6 cm and 0.69/year and 'to' as -0.0242 year. Estimates show that they grow fast and attain 73, 108, 126 and 134 cm in total length by first, second, third and fourth year respectively. Their weight increment is also fast and attains 5.5 kg, 16.8 kg, 25.9 kg and 33.7 kg respectively during the period. Stock assessment indicated that the stock at present is over exploited and under heavy fishing pressure. Rearing trial in aquarium tank showed that they are compatible to confined rearing conditions. Based on the distribution and biology of the species, their mariculture potential is discussed.
Resumo:
Based on the hydrodynamic model and Shore Protection Manual (CERC - USA) we have calculated wave field characteristics in the typical wind conditions (wind velocity equal to 13m/s in the high frequency direction of the wind regime). Comparison between measured and calculated wave parameters was presented and these results were corresponded to each other. The following main wave characteristics were calculated: -Pattern of the refraction wave field. -Average wave height field. -Longshore current velocity field in surf zone. From distribution features of wave field characteristics in research areas, it could be summarized as following: - The formation of wave fields in the research areas was unequal because of their local difference of hydrometeorological conditions, river discharge, bottom relief… - At Cuadai (Dai mouth, Hoian) area in the N direction of incident wave field, wave has caused serious variation of the coastline. The coastline in the whole region, especially, at the south of the mouth was eroded and the foreland in the north of the mouth was deposited. - At Cai river mouth (Nhatrang) area in the E direction of incident wave field, wave has effected strongly and directly to the inshore and channel structure. - At Phanthiet bay area in the SW direction of incident wave field, wave has effected strongly to the whole shoreline from Da point to Ne point and caused serious erosion.
Resumo:
The present investigation was undertaken to establish a reference situation for future use, to identify temporal and spatial composition of macrofauna and estimate some ecological indices in the sub tidal waters along the Bushehr coastal waters in Persian Gulf. Six transects were selected including Genaveh, Farakeh, Shif, Bandargah, Rostami and Asalouyeh, at each transect 3 station were sampled in depths of zero, 5 and 10 metres. Sampling was seasonally carried out by a VAN VEEN grab 0.0225 m2, during summer 2008 until spring 2009. Samples were wet sieved immediately using 0.5 mm mesh size sieves and sediment retained in the sieve was preserved in 4% buffered formalin solution. Macrofauna specimen were separated from the sediments using decantation and elutriation methods, enumerated and identified up to the Genus level. Environmental factors such as temperature. pH, and salinity were recorded in field using sensitive probs and refractometer (for salinity) and also sediment samples were taken for TOM and grain size analysis in all the stations. 5611 specimens belonging to 66 genera were collected during the present study. Polychaetes were dominant both in terms of genus number (31) and relative abundance (74 % of total macrofaunal abundance). The other dominant groups were Artheropoda, (16.1%), Molusca (2.8%), Echinodermata (1.29%) and others including Nematoda, Nemertina, Echiura and Turbellaria (5.8%). Thirty one Genera belong of 27 families of polychaeta, one genus and family of Subphylum Chlicerata,19 genera belong to 14 families of Crustacea, 8 genera belong to 6 families of Molusca, were indentified in the studied region. 1 family (Polygordidae) and 3 genera (Flabeligera, Pilargis and Polygordius) of Polychaeta, 1 family (Nymphonidae) and genus (Nymphon) of Chelicerata, 1 Family (Nematoplanidae) and genus (Nematoplana) of Turbellaria, were identified for the first time in Persian Gulf area. The result indicated that macrofauna organism have strong relationship with the grain size characteristics of the sediments they inhabit. The most surface deposit feeder specimens such as Prionospio and Cossura were found in zero meters depth of Genaveh, Farakeh, Bandargah, Rostami and Asalouyeh stations with sandy substratum, however the most burrowing deposit feeder and scavenger specimens such as Capitella and Petaloproctus were collected in 5 and 10 meter depths of stations with silty–clay substratum. The annual mean abundance, Shanon- weiner diversity and evenness of macrofauna were estimated1152.73 N/ m² , 2.72 and 0.792 respectively .The annual average biomass and secondary production were computed 1.797 gDW m² and 3.594 gDW m² y-1 .The average of water temperature, salinity, pH and oxygen concentration were recorded between 16.37-36.05 °C, 38-42 g/l, 7.89-8.76 and 4.23-8.23 mg/l, respectively during this study in 6 studied region. Among of investigated stations Asalouyeh adjacent of effluent canal of Gas and petrochemical industry sewage and Farakeh regions adjacent the Helleh estuary had the lowets and the highest community indices. The average of diversity and density in 5 meters depth stations with moderate of sand, silt and clay were slightly more than 2 other depths stations, it seems that 5 meters stations are made a transition habitats between 2 sandy and clay habitats, that can be used by 2 groups of surface and borrowing deposit feeders. Based on the data provided in this survey, the temperature variation, sediment texture, TOM, type habitat and manmade factors of Gas and petrochemical industries have had the most effect on the macrofauna community structure in the studied region during sampling periods.
Resumo:
1. The stripe-backed weasel Mustela strigidorsa is one of the rarest and least-known mustelids in the world. Its phylogenetic relationships with other Mustela species remain controversial, though several unique morphological features distinguish it from congeners. 2. It probably lives mainly in evergreen forests in hills and mountains, but has also been recorded from plains forest, dense scrub, secondary forest, grassland and farmland. Known sites range in altitude from 90 m to 2500 m. Data are insufficient to distinguish between habitat and altitudes which support populations, and those where only dispersing animals may occur. 3. It has been confirmed from many localities in north-east India, north and central Myanmar, south China, north Thailand, north and central Laos, and north and central Vietnam. Given the limited survey effort, the number of recent records shows that the species is not as rare as hitherto believed. Neither specific nor urgent conservation needs are apparent.
Resumo:
In this study various scalar dissipation rates and their modelling in the context of partially premixed flame are investigated. A DNS dataset of the near field of a turbulent hydrogen lifted jet flame is processed to analyse the mixture fraction and progress variable dissipation rates and their cross dissipation rate at several axial positions. It is found that the classical model for the passive scalar dissipation rate ε{lunate}̃ZZ gives good agreement with the DNS, while models developed based on premixed flames for the reactive scalar dissipation rate ε{lunate}̃cc only qualitatively capture the correct trend. The cross dissipation rate ε{lunate}̃cZ is mostly negative and can be reasonably approximated at downstream positions once ε{lunate}̃ZZ and ε{lunate}̃cc are known, although the sign cannot be determined. This approach gives better results than one employing a constant ratio of turbulent timescale and the scalar covariance c'Z'̃. The statistics of scalar gradients are further examined and lognormal distributions are shown to be very good approximations for the passive scalar and acceptable for the reactive scalar. The correlation between the two gradients increases downstream as the partially premixed flame in the near field evolves ultimately to a diffusion flame in the far field. A bivariate lognormal distribution is tested and found to be a reasonable approximation for the joint PDF of the two scalar gradients. © 2011 The Combustion Institute.
Resumo:
This paper examines the possibility of using a background gas medium to enhance the current available from low threshold carbon cathodes. The field emission current is used to initiate a plasma in the gas medium, and thereby achieve a current multiplication effect. Results on the variation of anode current as a function of electric field and gas pressure are presented. These are compared with model calculations to verify the principles of operation. The influence of ion bombardment on the long term performance thin film carbon cathodes is examined for He and Ar multiplication plasmas. A measure of the influence of current multiplication on display quality is presented by examining light output from two standard low voltage phosphors. Also studied are the influence of doping the carbon with N to lower the threshold voltage for emission as well as the consequent impact on anode current from the plasma.
Resumo:
We present electronically controlled field emission characteristics of arrays of individually ballasted carbon nanotubes synthesized by plasma-enhanced chemical vapor deposition on silicon-on-insulator substrates. By adjusting the source-drain potential we have demonstrated the ability to controllable limit the emission current density by more than 1 order of magnitude. Dynamic control over both the turn-on electric field and field enhancement factor have been noted. A hot electron model is presented. The ballasted nanotubes are populated with hot electrons due to the highly crystalline Si channel and the high local electric field at the nanotube base. This positively shifts the Fermi level and results in a broad energy distribution about this mean, compared to the narrow spread, lower energy thermalized electron population in standard metallic emitters. The proposed vertically aligned carbon nanotube field-emitting electron source offers a viable platform for X-ray emitters and displays applications that require accurate and highly stable control over the emission characteristics.
Resumo:
The vibro-acoustic response of built-up structures, consisting of stiff components with low modal density and flexible components with high modal density, is sensitive to small imperfections in the flexible components. In this paper, the uncertainty of the response is considered by modeling the low modal density master system as deterministic and the high modal density subsystems in a nonparametric stochastic way, i.e., carrying a diffuse wave field, and by subsequently computing the response probability density function. The master system's mean squared response amplitude follows a singular noncentral complex Wishart distribution conditional on the subsystem energies. For a single degree of freedom, this is equivalent to a chi-square or an exponential distribution, depending on the loading conditions. The subsystem energies follow approximately a chi-square distribution when their relative variance is smaller than unity. The results are validated by application to plate structures, and good agreement with Monte Carlo simulations is found. © 2012 Acoustical Society of America.