973 resultados para Prawn Penaeus-japonicus
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this study the occurrence of sensory structures on the antennules and antennae of the giant river prawn Macrobrachium rosenbergii (De Man) during postembryonic ontogenetic development were examined. Larvae and postlarvae were obtained from hatchery recirculating tanks, juveniles from indoor nursery tanks, and adults from earthen grow-out ponds. The animals were fixed with Karnovsky fixative and dissected. Antennules and antennae were removed, metal-coated, and photodocumented using a scanning electron microscope. The antennules have aesthetascs and simple plumose and pappose setae; the antennae have simple, plumose and pappose setae. These structures increase in density, covered surface, and distribution during ontogeny and should be related to chemoreception and mechanoreception. The antennular statocyst that appears during larval stage VII of the giant river prawn has an array of sensory structures that enable the perception of chemical and tactile stimuli beginning with its early life stages. The ontogenetic changes observed allow an inference that initial-stage larvae, advance-stage larvae, juveniles, and adults have different capacities to exploit the environment.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Amazon River prawn Macrobrachium amazonicum is endemic to tropical South America and is being intensively exploited by artisanal fisheries in Brazil. Limited information is available about the nutritional requirements of M. amazonicum, although the production of this species is now technically feasible. The digestive process in this species is still unclear and investigation into the digestive cells of its hepatopancreatic epithelium is required. Thus, the hepatopancreas from 15 specimens were fixed in Karnovsky Solution and processed for Transmission Electron Microscopy. Our results indicate that E cells are located at the distal portion of the hepatopancreatic tubule and are involved in mitotic activity. The cylindrical R cells are sparse and are only found in the proximal portion of the hepatopancreatic tubule. According to its ultrastructural characteristics, this cell is involved in pinocytosis. M cells are generally found near the R cells. The F cells are scattered throughout the length of the hepatopancreatic tubules, and B cells are observed mainly in the proximal and middle regions. F cells and B cells are likely related to, respectively, the synthesis of enzymes and the intracelular digestion. R- and M cells are probably related to material storage. Thus, these findings provide basic information on the cell types that perform protein digestion in M. amazonicum, and will be useful in further nutritional research. The identification and characterization of digestive cells is an important step towards understanding the digestive mechanisms.
Resumo:
The relationships between the spatial and temporal variations in the abundance of the shrimp Nematopalaemon schmitti and water temperature, salinity, and texture and organic-matter content of the sediment, were analysed in Ubatumirim, Ubatuba and Mar Virado bays on the northern coast of São Paulo, Brazil. Sampling was carried out monthly, from January 1998 through December 1999, from a shrimp boat equipped with double-rig nets, along six transects in each bay. In total, 2 116 specimens of N. schmitti were caught. Their distribution differed among bays, transects and seasons (ANOVA, p < 0.05). Highest total abundance was found in areas of high organicmatter content, in substrate composed mainly of very fine sand and silt and clay, and during winter and autumn. Although multiple regression analysis showed no significant relationship (p > 0.05), observations suggest that water tempera ture, sediment texture, organic-matter content, and the presence of biodetritus and plant fragments, provided favourable environmental conditions for the establishment of N. schmitti in the region.
Resumo:
A virus, tentatively identified as reo-like, occurred concurrently with experimentally-induced Baculovirus penaei (BP) infection in cultured white shrimp larvae Penaeus vannamei. Each shrimp with a reo-like viral infection also had a BP infection, but not all BP-infected shrimp had a reo-like infection. Both viruses occurred in the same tissues and occasionally withln the same cell. The reolike virus developed in epithelial cells of the anterior midgut and in reserve- and fibrillar-cells of the hepatopancreas. The paraspherical and non-enveloped reo-like virions (ca. 50 nm diam.) occurred as unordered aggregates in the cell cytoplasm. Their etiology has not been determined. Reo-like virions may have been introduced along with the BP virus, or, were latent and only manifested due to stress induced by the more pathogenic BP virus.
Resumo:
The aseptate gregarine Paraophloidina scolecoides n. sp. (Eugregarinorida: Lecudinidae) heavily infected the midgut of cultured larval and postlarval specimens of Penaeus vannamei from a commercial 'seed-production' facility in Texas, USA. It is morphologically similar to P. korotneffi and P. vibiliae, but it can be distinguished from them and from other members of the genus by having gamonts associated exclusively by lateral syzygy. Shrimp acquired the infection at the facility; nauplii did not show any evidence of infection, but protozoea, mysis, and postlarval shrimp had a prevalence and intensity of infection ranging from 56 to 80 % and 10 to >50 parasites, respectively. Infected shrimp removed from the facility to aquaria at another location lost their gamont infection within 7 days When voided from the gut, the gregarine disintegrated in seawater. Results suggest that P. vannamei is an accidental host, although a survey of representative members of the invertebrate fauna from the environment associated with the facility failed to discover other hosts. No link was established between infection and either the broodstock or the water or detritus from the nursery or broodstock tanks.
Resumo:
The relationship between energy reserves of the penaeid shrimp Penaeus vannamei and Baculovirus penaei, or BP, were investigated in a series of experiments using mysis stage or early postlarval shrimp. Pre-exposure and post-exposure levels of protein and triacylgycerol (TAG) were determined. The effect of pre-exposure protein and TAG levels on susceptibility to BP infections was also investigated by starving a group of shrimp immediately prior to BP exposure. There was no consistent relationship between either pre-exposure or post-exposure protein levels and the percent of shrimp developing patent BP infections. There was, however, a significant positive correlation between TAG levels immediately prior to viral exposure and prevalence of infection 72 h later. Experimental reduction of TAG reserves prior to BP exposure delayed the development of a patent infection. In some, but not all, experiments there was a significant reduction in TAG levels of infected compared with uninfected shrimp 72 h post-exposure. The effect of patent BP infections on host TAG levels was subordinate to fluctuations in TAG content associated with the ontogeny of the hepatopancreas. Results of this study support histological observations that shrimp lipid levels can be altered by baculovirus infections. Furthermore, high levels of energy reserves in the form of TAG are associated with increased susceptibility to BP infection in larval and postlarval shrimp.
Resumo:
Dry mass (DM) and total ammonia-N (TAN) excretion were determined in embryos, larvae (ZI-ZIX, Z = zoea ), and postlarvae (PL) at 1, 7, and 14 d after metamorphosis (PL1, PL7, and PL14) of Macrobrachium amazonicum. Animals in postmolt-intermolt (A-C) stages were sorted according to their developmental stages, and placed into incubation chambers (similar to 30 mL) for 2 h to quantify TAN excretion. After this period, analyses were carried out using Koroleff`s method for TAN determination. Individual TAN excretion generally increased throughout ontogenetic development and varied from 0.0090 +/- 0.0039 mu g TAN/individual/h in embryo to 1.041 +/- 0.249 mu g TAN/individual/h in PL14. There was no significant difference between embryo-ZIV and ZV-ZIX (P > 0.05), whereas PL1, PL7, and PL14 differed (P < 0.05) from each other. Higher increments in individual ammonia-N excretion were observed between ZIV-ZV, PL1-PL7, and PL7-PL14. Mass-specific excretion rates presented two groups, embryo-ZII (P > 0.05) and ZIII-PL14 (P > 0.05). The lowest value was found in embryo (0.17 +/- 0.07 mu g TAN/mg DM/h) and the maximum values in ZV and PL1 (0.65 +/- 0.25 and 0.64 +/- 0.27 mu g TAN/mg DM/h, respectively). Results indicate that metabolic rate is proportional to the body mass in M. amazonicum, during early life stages. Variations in ammonia excretion during this phase may be associated mainly with body size. Data obtained in the present study may be useful in developing and optimizing rearing techniques of M. amazonicum, such as the proportions between biofilter and rearing tank size, and stocking density in culture tanks or in transport bags.