980 resultados para Powders: solid state reaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"June 1961 (OIT Issuance Date)."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contract AT(11-1)-229."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contract AT-30-1-GEN-366."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-05

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the presence of nonionic block-copolymer surfactant, nanocrystalline zirconia particles with MSU mesostrucmre were synthesized by a novel solid-state reaction route. The zirconia particles possess a nanocrystalline pore wall, which renders higher thermal stability compared to an amorphous framework. To further enhance its stability, laponite, a synthetic clay, was introduced. Laponite acts as an inhibitor to crystal a growth and also as a hard template for the mesostructure. High surface area and ordered pore structure were observed in the stabilized zirconia. The results show that the formation of the MSU structure is attributed to reverse hexagonal micelles, which are the products of the cooperative self-assembly of organic and inorganic species in the solid-state synthesis system with crystalline water and hygroscopic water present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new model for the continuous measurement of a coupled quantum dot charge qubit. We model the effects of a realistic measurement, namely adding noise to, and filtering, the current through the detector. This is achieved by embedding the detector in an equivalent circuit for measurement. Our aim is to describe the evolution of the qubit state conditioned on the macroscopic output of the external circuit. We achieve this by generalizing a recently developed quantum trajectory theory for realistic photodetectors [P. Warszawski, H. M. Wiseman, and H. Mabuchi, Phys. Rev. A 65, 023802 (2002)] to treat solid-state detectors. This yields stochastic equations whose (numerical) solutions are the realistic quantum trajectories of the conditioned qubit state. We derive our general theory in the context of a low transparency quantum point contact. Areas of application for our theory and its relation to previous work are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a scheme for quantum information processing based on donor electron spins in semiconductors, with an architecture complementary to the original Kane proposal. We show that a naive implementation of electron spin qubits provides only modest improvement over the Kane scheme, however through the introduction of global gate control we are able to take full advantage of the fast electron evolution timescales. We estimate that the latent clock speed is 100-1000 times that of the nuclear spin quantum computer with the ratio T-2/T-ops approaching the 10(6) level.