999 resultados para Potencial antioxidante
Resumo:
Measurements of acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) were combined in order to verify the ecological hazard of contaminated sediments from the Santos-Cubatão Estuarine System (SE Brazil), which is located in one of the most industrialized areas in the Latin America. Intertidal sediments from the Morrão River estuary were collected seasonally in short cores. The redox conditions, organic matter contents and grain-size were the main controlling factors on SEM distribution. However, clear relationships among these variables and AVS were not observed. The molar SEM/AVS ratios were frequently > 1 especially in the summer, suggesting major metal bioavailability hazard in this humid hot season.
Resumo:
Maytenus ilicifolia (Celastraceae) is a native plant of South America and popularly known as "espinheira-santa". The aim of this study was to evaluate the antioxidant capacity of extracts and isolated compounds from this plant. The antioxidant activity of the crude and semipurified extracts and isolated compounds was evaluated through DPPH-radical and phosphomolybdenum-complex assays. By both methods, the ethyl-acetate fraction demonstrated better antioxidant capacity compared with vitamin C and trolox. In the compounds, the higher the number of hydroxyls, the greater the antioxidant activity. In addition, stereochemistry influenced antioxidant activity, i.e., compounds with 2R,3R showed greater activity than those with 2R,3S.
Resumo:
The importance of chitosan has grown significantly over the last two decades due to its renewable and biodegradable source, and also because of the recent increase in the knowledge of its functionality in the technological and biomedical applications. The present article reviews the biopolymer chitosan and its derivatives as versatile biomaterials for potential drug delivery systems, as well as tissue engineering applications, analgesia and treatment of arthritis.
Resumo:
In economic terms, biodiversity transcends the boundaries usually given to conventional industries because it is a valuable source of biological and chemical data of great use to drug discovery. Certainly, the use of natural products has been the single most successful strategy in the discovery of novel medicines, and most of the medical breakthroughs are based on natural products. Half of the top 20 best-selling drugs are natural products, and their total sales amounted to US$ 16 billions shows the importance of natural products, which is evidenced by the new chemical entities (NCE) approved by regulatory authorities around the world in the past decade. Recently, the approval of the alkaloid galanthamine as a medicine to treat Alzheimer's disease shows that natural compounds from plants will continue to reach the market. The huge biological diversity of the Brazilian biomes, by its ability to generate new knowledge and technological innovation can be a fantastic alternative as raw material for drug discovery.
Resumo:
The aim of this work was to evaluate antioxidant activity of lemon seeds added to soybean oil, submitted to accelerated incubator-storage test and to determine its synergistic effect with the synthetic antioxidant TBHQ. The treatments Control, TBHQ (50 mg/kg), LSE (2,400 mg/kg Lemon Seed Extract), Mixture 1 (LSE + 50 mg/kg TBHQ) and Mixture 2 (LSE + 25 mg/kg TBHQ) were prepared and subjected to the accelerated incubator-storage test at 60 ºC for 12 days; samples were taken every 3 days and analyzed regarding peroxide value and conjugated dienes. The results showed that antioxidant activity of the tested treatments were: TBHQ = Mixture 1 = Mixture 2 > LSE > Control.
Resumo:
Oleanolic and ursolic acids are triterpenes that exist abundantly in the plant kingdom. They show antitumor activity and their cytotoxic activity was already evaluated against a broad range of cell lines. The inhibition of enzymes involved in the metabolism of DNA and the induction of apoptosis are known events that have been related to the antitumour activity of these triterpenes. The antiinflamatory and antioxidant activities also seem to play an important role in their antitumour activity. In this review, it is presented an overview of the importance of the potential antitumour, antiinflamatory and antioxidant activities of these triterpenoid derivatives. Also, we propose a structural-activity relationship to triterpenes containing oleanane or ursane skeleton and their cytotoxic activity.
Resumo:
Phytochemical investigation of ethanolic leaves extracts of T. fagifolia led to the isolation of (+)-catechin, sitosterol-3-O-β-D-glucopyranoside, α- and β-tocopherol, a mixture of lupeol, α- and β-amyrin, sitosterol and a mixture of glicosid flavonoids (CP-13). The structures of these compounds were identified by ¹H and 13C NMR spectral analysis and comparison with literature data. Absolute configuration of the catechin was determinate by circular dichroism. Antioxidant activity (EC50), evaluated by 2,2-diphenyl-1-picrylhidrazyl (DPPH) assay system, decreased in the order: (+)-catechin > hydroalcoholic fraction > CP-13 > aqueous fraction > EtOH extract.
Resumo:
The effects of the extraction system (50% methanol or 50% methanol pH 2.0), volume/material ratio, temperature, time and extractions with 70% acetone were evaluated in the total phenolic compounds (TPC) extraction and in antioxidant activities (AA) using FRAP and ABTS assays in guava fruit. The best yield was obtained when 0.5 g of guava were extracted first with 20 mL 50% methanol and then four times with 20 mL 70% acetone during 30 min at 50 °C. Among the different trials guava fruit exhibited high levels of AA as well as TPC.
Resumo:
Propolis is a resinous hive product collected by honeybees from various plant sources. It has a complex chemical composition, constituted by various phenolic compounds. Extracts of increasing polarity (n-hexane, chloroform, and ethanol) were obtained from a sample of red propolis from the state of Alagoas. Assays were carried out for determination of contents of phenolics, along with antibacterial and antioxidant activities. The EEP, fractions and sub-fractions showed strong biological activities and were related with phenolic the content compounds contents. The sub-fractions were more bioactive than the EEP and fractions, demonstrating that the antioxidant and antibacterial activities are not a result of synergistic effect between the various chemical compounds in propolis.
Resumo:
The obtained corn germ phytic acid (CGPA) antioxidant potential was evaluated through the deoxyribose, bathophenanthroline (BPS) and DPPH assays. In the concentration of 130.5 μM of CGPA the hydroxyl radical maximum sequestering antioxidant activity was 29.3% while standard phytic acid (SPA) presented this maximum activity of 18.2% in the concentration of 33.2 μM of SPA. The BPS assays revealed that the chelation activity towards Fe2+ increased concurrently with the increase of CGPA concentration and its Fe2+ contact time. Finally, DPPH assay showed that CGPA and SPA did not present electron-donating capacity to DPPH.
Resumo:
Six known alkaloids iboga type and the triterpen α- and β-amyrin acetate were isolated from the roots and stems of Peschiera affinis. Their structures were characterized on the basis of spectral data mainly NMR and mass spectra. 1D and 2D NMR spectra were also used to unequivocal ¹H and 13C chemical shift assignments of alkaloids. The ethanolic extract of roots, alkaloidic and no-alkaloidic fractions and iso-voacristine hydroxyindolenine and voacangine were evaluated for their antioxidative properties using an autographic assay based on β-carotene bleaching on TLC plates, and also spectrophotometric detection by reduction of the stable DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical.
Resumo:
Films of sodium carboxymethyl cellulose, sodium alginate and their mixture were evaluated in terms of interactions between the polymers, morphology, water absorption and application as seed coatings. FTIR analysis suggested that only hydrophobic interactions occurred between the polymers. The coating of bean seeds was confirmed by microscopy, indicating the formation of dense and homogeneous films with 7 μm thickness. The obtained films did not affect the germination capacity of the seeds. In summary, the characteristics and properties of the films formed and the water absorption capacity, indicate that these systems are viable for use in seed coating processes.
Resumo:
In recent years nanomaterials, such as metallic nanoparticles, nanowires, nanotapes, nanotubes and nanocomposites, have attracted increasing interest for several technological applications. In catalysis, the great potential of nanomaterials is related to the high catalytic activity exhibited by these materials as a function of the high surface/volume ratio when the particles acquire diameter below 5 nm. In this work, a review about concepts and background of nanoscience and nanotechnology is presented with emphasis in catalysis. Special attention is given to gold nanoparticles and carbon nanotubes, focusing the properties and characteristics of these materials in several catalytic reactions.
Resumo:
The phytochemical investigation of dichloromethane extract from root bark of Lonchocarpus filipes Benth (Leguminosae) afforded four flavonoids including three dibenzoylmethane derivatives rarely found in nature. The structures were established based on their spectral data (¹H and 13C NMR, 2D-NMR) as being: lanceolatin B (1), pongamol (2), (E)-7-O-methylpongamol (3) and (E)-9-O-methylpongamol (4). Compound (4) is described herein for the first time as a natural product. The extracts and the isolated compounds (1), (2) and (3) displayed high toxicity in the brine shrimp lethality assay. Only compound (2) showed antioxidant activity using a DPPH radical scavenging assay. This is the first report on the phytochemical study of Lonchocarpus filipes.
Resumo:
Esterification reactions of glycerol with lauric acid in solvent free system were carried out using lipases from several sources. All lipases were immobilized on polysiloxane-polyvinyl alcohol particles by covalent binding with high activity recovered. Among the tested enzymes, the Candida antarctica lipase allowed to attain the highest molar conversion (76%), giving similar proportions of monolaurin, dilaurin and low amount of trilaurin. To further improve the process, the Response Surface Methodology (RSM) was used and optima temperature and molar ratio glycerol to lauric acid were found to be 45 ºC and 5:1, respectively. Under these conditions, 31.35% of monolaurin concentrations were attained and this result was in close agreement with the statistical model prediction.