973 resultados para Portland Cement
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Civil, Perfil de Estruturas
Resumo:
Construction and Building Materials 49 (2013), 315-327
Resumo:
Equity research report
Resumo:
COST TU 1404
Resumo:
COST Action TU 1404
Resumo:
COST TU 1404
Resumo:
A new technique was developed for producing thin panels of a cement based material reinforced with relatively high content of steel fibres originated from the industry of tyre recycling. Flexural tests with notched and un-notched specimens were carried out to characterize the mechanical properties of this Fibre Reinforced Cement Composite (FRCC) and the results are presented and discussed. The values of the fracture mode I parameters of the developed FRCC were determined by performing inverse analysis with test results obtained in three point notched beam bending tests. To appraise the potentialities of these FRCC panels for the increase of the shear capacity of reinforced (RC) beams, numerical research was performed on the use of developed FRCC panel for shear reinforcement by applying the panels in the lateral faces of RC beams deficiently reinforced in shear.
Resumo:
By taking advantage of the appropriate use of cement and polymer based materials and advanced computational tools, a pre-fabricated affordable house was built in a modular system. Modular system refers to the complete structure that is built-up by assembling pre-fabricated sandwich panels composed of steel fibre reinforced self-compacting concrete (SFRSCC) outer layers that are connected by innovative glass fibre reinforced polymer (GFRP) connectors, resulting in a panel with adequate structural, acoustic, and thermal insulation properties. The modular house was prepared for a typical family of six members, but its living area can be easily increased by assembling other pre-fabricated elements. The speed of construction and the cost of the constructive elements make these houses competitive when compared to traditional solutions. In this paper the relevant research subjacent to this project (LEGOUSE) is briefly described, as well as the construction process of the built real scale prototype.
Resumo:
This work proposes a constitutive model to simulate nonlinear behaviour of cement based materials subjected to different loading paths. The model incorporates a multidirectional fixed smeared crack approach to simulate crack initiation and propagation, whereas the inelastic behaviour of material between cracks is treated by a numerical strategy that combines plasticity and damage theories. For capturing more realistically the shear stress transfer between the crack surfaces, a softening diagram is assumed for modelling the crack shear stress versus crack shear strain. The plastic damage model is based on the yield function, flow rule and evolution law for hardening variable, and includes an explicit isotropic damage law to simulate the stiffness degradation and the softening behaviour of cement based materials in compression. This model was implemented into the FEMIX computer program, and experimental tests at material scale were simulated to appraise the predictive performance of this constitutive model. The applicability of the model for simulating the behaviour of reinforced concrete shear wall panels submitted to biaxial loading conditions, and RC beams failing in shear is investigated.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Se pretende contribuir al esclarecimiento de la causa o causas de la importante disminución de la resistencia de las pastas de cemento portland sometidas a altas temperaturas. Para ello el primer paso y el que desarrolla este trabajo final de carrera es la determinación de los diferentes componentes de las pastas de cemento portland y más concretamente las fases en las que se encuentran los C-S-H a diferentes edades ya que son los responsables de las principales resistencias mecánicas de los materiales realizados con cemento portland, como los morteros y los hormigones.
Resumo:
Our Vision is that each individual accessing these service’s be provided with a choice of affordable, nutritious meals in a safe, warm and attractive environment.  We achieve this through the following best practice standards: – Quality service – Maintaining a high quality environment – The highest quality food standard (with choice of meals) Cafes are open to the public from 8am serving breakfast until 11.30 and lunch/dinner from 12-4pm. (open Monday – Friday) Telephone: (01) 8555577 Initiative Type Community Cafés Location Dublin 1
Resumo:
Several mechanisms have been postulated as potentially involved in life-threatening complications during cemented surgery. In this study, we evaluated the role of anaphylaxis and pulmonary fat embolism in the pathophysiology of bone cement implantation syndrome in a series of fatal cases that underwent medicolegal investigations. Postmortem findings in these cases were compared with those obtained from individuals who died after other injuries and/or interventions and in which activated mast cells and pulmonary fat embolism were involved in the pathogenesis of death. Fifty subjects were selected including 6 individuals who had undergone cemented total hip arthroplasty and died intraoperatively, 32 subjects who died shortly after being involved in traffic accidents, 8 individuals who died shortly after the injection of contrast material, and 4 subjects who had undergone orthopedic surgery and died postoperatively. Massive pulmonary fat embolism was determined to be the cause of death in all the 6 subjects who died intraoperatively as well as the main cause of death in traffic-road victims with rapid respiratory function deterioration. Mast cell activation was identified exclusively in the group of subjects who died shortly after contrast material administration. Massive pulmonary fat embolism appears to be the most important factor responsible for severe cardiorespiratory function deterioration during cemented arthroplasty. Cardiac comorbidities can also significantly influence the severity of intraoperative complications, thus corroborating the hypothesis of a multifactorial model in the pathogenesis of bone cement implantation syndrome.
Resumo:
Background: Local antibiotics may significantly improve the treatmentoutcome in bone infection without systemic toxicity. For impregnationof polymethylmethacrylate (PMMA), gentamicin, vancomycin and/orclindamycin are currently used. A new lipopeptid antibiotic,daptomycin, is a promising candidate for local treatment due to itsspectrum against staphylococci and enterococci (including multiresistantstrains), and concentration-dependent rapid bactericidalactivity. We investigated activity of antibiotic-loaded PMMA againstStaphylococcus epidermidis biofilms using an ultra-sensitive bacterialheat detection method (microcalorimetry).Methods: Staphylococcus epidermidis (strain RP62A, susceptibleto daptomycin, vancomycin and gentamicin) at concentration 106bacteria/ml was incubated with 2 g-PMMA block (Palacos, HeraeusMedical, Hanau, Germany) in 25 ml tryptic soy broth (TSB)supplemented with calcium. PMMA blocks were preloaded withdaptomycin, vancomycin and gentamicin each at 2 g/40 mg (= 100 mg/block) PMMA. After 72 h-incubation at 35 °C under static conditions,PMMA blocks were rinsed in phosphate-buffered solution (PBS) 5times and transferred in 4 ml-microcalorimetry ampoule filled with 1 mlTSB. Bacterial heat production, which is proportional to the quantityof biofilm on PMMA surface, was measured by isothermalmicrocalorimetry. The detection time was calculated as the time untilthe heat flow reached 20 microwatt.Results: Biomechanical properties did not differ between antibioticloadedand non-loaded PMMA blocks. The mean detection time (±standard deviation) of bacterial heat was 6.5 ± 0.4 h for PMMA withoutantibiotics (negative control), 13.5 ± 4.6 h for PMMA with daptomycin,14.0 ± 4.1 h for PMMA with vancomycin and 5.0 ± 0.4 h for PMMAwith gentamicin.Conclusion: Our data indicates that antibiotics at 2 g/40 mg PMMAdid not change the biomechanical properties of bone cement. Daptomycinand vancomycin were more active than gentamicin against S.epidermidis biofilms when all tested at 2 g/40 mg PMMA. In the nextstep, higher concentrations of daptomycin and their elution kineticneeds to be determined to optimize its antibiofilm activity before usingin the clinical setting.