897 resultados para Plants, Effect of nitrogen on.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within a community, species may germinate at different times so as to mitigate competition and to take advantage of different aspects of the seasonal environment (temporal niche differentiation). We illustrated a hypothesis of the combined effects of abiotic and biotic competitive factors on germination timing and the subsequent upscale effects on community assembly. We estimated the germination timing (GT) for 476 angiosperm species of the eastern Tibetan Plateau grasslands under two light treatments in the field: high (i.e. natural) light and low light. We also measured the shift in germination timing (SGT) across treatments for all species. Furthermore, we used phylogenetic comparative methods to test if GT and SGT were associated with seed mass, an important factor in competitive interactions. We found a significant positive correlation between GT and seed mass in both light treatments. Additionally, small seeds (early germinating seeds) tended to germinate later and large seeds (late germinating seeds) tended to germinate earlier under low light vs high light conditions. Low light availability can reduce temporal niche differentiation by increasing the overlap in germination time between small and large seeds. In turn, reduced temporal niche differentiation may increase competition in the process of community assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hemolysis is the main cause of biochemical analysis rejection's in veterinary laboratories, however the relative error caused by hemoglobin on serum biochemical profile has not been properly established on several species. In order to establish criteria for aproval and rejection of hemolyzed samples for serum biochemical tests, the hypothesis that hemolysis causes biochemical changes in canine, cattle and horses and that laboratorial error depends on species and hemolysis degree was tested. Thus, non-hemolyzed serum was contaminated with crescent hemoglobin levels and using commercial routine reagents, the serum concentrations of uric acid, albumin, cholesterol, triglycerides and urea, besides the activity of ALT, AST, CK and GUT were quantified in triplicate samples. The relative error was calculated by the comparison between hemolyzed and non-hemolyzed samples. Hemolys is did not cause significant error on the albumin determination in all three species, AST in canine and cattle, ALT in horses, UK and cholesterol in canine. There was a linear increase on uric acid levels in horses and cattle, triglycerides in all three species. A linear increase in serum urea in all species serum, UK and cholesterol in cattle and cholesterol in horses was observed. Serum AST activity on equine serum and ALT in cattle decreased linearly due to hemolysis. It was concluded that hemolysis promotes changes in canine, equine and bovine serum chemistry profile, however the laboratorial error not necessarily compromises the diagnosis in all cases, because the changes depends on species and degree of in vitro hemolysis.