902 resultados para Piezoelectric vibration
Resumo:
An adaptive control damping the forced vibration of a car while passing along a bumpy road is investigated. It is based on a simple kinematic description of the desired behavior of the damped system. A modified PID controller containing an approximation of Caputo’s fractional derivative suppresses the high-frequency components related to the bumps and dips, while the low frequency part of passing hills/valleys are strictly traced. Neither a complete dynamic model of the car nor ’a priori’ information on the surface of the road is needed. The adaptive control realizes this kinematic design in spite of the existence of dynamically coupled, excitable internal degrees of freedom. The method is investigated via Scicos-based simulation in the case of a paradigm. It was found that both adaptivity and fractional order derivatives are essential parts of the control that can keep the vibration of the load at bay without directly controlling its motion.
Resumo:
A presente dissertação tem como objetivo principal a análise numérica do comportamento dinâmico de uma ponte ferroviária, sob ação de tráfego ligeiro ferroviário. Neste contexto são apresentados alguns fundamentos teóricos a ter em conta nestes domínios, visando uma melhor compreensão dos fenómenos existentes no comportamento dinâmico de pontes ferroviárias quando sujeitas ao tráfego. O caso de estudo teve como foco a ponte Luiz I, uma ponte metálica situada sobre o rio Douro, que liga as cidades do Porto e Vila Nova de Gaia, sob ação de tráfego ligeiro ferroviário no seu tabuleiro superior para a condição anterior aos trabalhos de reabilitação e reforço realizados entre 2004 e 2005. Para o efeito foi desenvolvido um modelo numérico de elementos finitos da ponte realizado com recurso ao programa ANSYS, assim como um modelo numérico do veículo do Metro de Lisboa. Com base nestes modelos foram obtidos os parâmetros modais, nomeadamente as frequências naturais e os modos de vibração de toda a estrutura e do veículo. O estudo do comportamento dinâmico da ponte foi realizado por intermédio de uma metodologia de cargas móveis e de interação veículo-estrutura, através da ferramenta computacional Train-Bridge Interaction (TBI). As análises dinâmicas foram efetuadas para a passagem dos veículos de passageiros das redes de Metros do Porto e Lisboa. Nestas análises é estudada a resposta da estrutura em função da variabilidade ao nível da secção transversal, dependência do tramo, influência do veículo, da sua velocidade de circulação e impacto das frequências de vibração estimadas pelo modelo numérico.
Resumo:
O presente trabalho foi desenvolvido na obra do Aproveitamento Hidroelétrico de Foz Tua onde a autora teve oportunidade de realizar o estágio curricular junto da equipa da Fiscalização no período de 2 de Fevereiro de 2015 a 31 de Julho de 2015. A elaboração do presente trabalho pretende transmitir conhecimentos adquiridos relacionados com a constituição de um Aproveitamento Hidroelétrico, os tipos de barragens existentes, monitorização e controlo da segurança da estrutura da Barragem, controlo de qualidade de betão e o processo construtivo de uma Barragem. A construção da Barragem do Aproveitamento Hidroelétrico de Foz Tua tem sido realizada através do método tradicional, que consiste na aplicação de betão convencional compactado por vibração interna. Ao longo deste processo, foram aplicadas diversas técnicas construtivas, nomeadamente: escavação, betonagem, refrigeração artificial, injeção de juntas e tratamento de fundações. Neste trabalho foram ainda analisados os cuidados de segurança necessários neste tipo de estruturas, tendo como base o Regulamento de Segurança de Barragens. Este regulamento define as regras a seguir durante a execução da barragem e a monotorização que deve ser efetuada à mesma, permitindo assim o controlo da segurança da estrutura na sua construção e vida útil. É necessário ainda existir um controlo da qualidade, produção e aplicação do betão na estrutura de modo a aumentar a segurança, qualidade e durabilidade da mesma.
Resumo:
Os modelos a ser analisados pelo Método de Elementos Finitos são cada vez mais complexos e, nos tempos que correm, seria impensável realizar tais análises sem um apoio computorizado. Existe para esta finalidade uma vasta gama de programas que permitem realizar tarefas que passam pelo desenho de estruturas, análise estática de cargas, análise dinâmica e vibrações, visualização do comportamento físico (deformações) em tempo real, que permitem a otimização da estrutura. Sob o pretexto de permitir a qualquer utilizador uma análise de estruturas simples com o Método dos Elementos Finitos, surge esta tese, onde se irá criar de raiz um programa com interface gráfica no ambiente MATLAB® para análise de estruturas simples com dois tipos de elemento finito, triangular de deformação constante e quadrangular de deformação linear. O software desenvolvido, verificado por comparação com um software comercial dedicado para o efeito, efetua malhagem com elementos bidimensionais triangulares e quadriláteros e resolve modelos arbitrados pelo Método de Elementos Finitos, representando estes resultados visualmente e em formato tabular.
Resumo:
Dissertation to obtain the Doctoral degree in Physics Engineering
Resumo:
Three patients (males, black, ages 37, 40 and 57) attended a university clinic with a progressive paraparesis of obscure origin. One patient who referred disease duration of more than 16 years, showed diminished deep reflexes, bilateral Babinski's sign, diminished sensation of vibration, abnormal bladder function and back pain. The other two patients (with one and six years of disease duration) complained of weakness in one leg, increased deep reflexes and back pain. Babinski's sign and bladder disturbance were also present in the patient with six years of disease. Blood samples tested by an enzyme immune assay and a discriminatory Western blot were positive for HTLV-I. The familial analysis of one patient showed a possible pattern of sexual and vertical transmission of the virus. To the best of our knowledge, these are the first cases of a proven association between HTLV-I and TSP/HAM in Belem, Para, and emphasize the need to actively look for cases of neurological disease associated to the virus.
Resumo:
Nowadays it is known that the human body is continuous source of many types of energy and the devices used for collecting energy taken from the environment also have the required capabilities for the collection of the energy produced by the Human body (HB), but very limited and with very low efficiency. Low power and high yield converters are particularly needed in these cases of collecting energy from human activity and its movements due to the small amount of energy generated this way. But this situation can be improved. Enhancing or focusing the human movements by using mechanical amplifiers applied to the piezoelectric element. By doing so the input of energy in the element increases. As such increasing its output, therefore producing more energy.
Resumo:
A thermal Energy Storage Unit (ESU) could be used to attenuate inherent temperature fluctuations of a cold finger, either from a cryocooler working or due to sudden income heat bursts. An ESU directly coupled to the cold source acts as a thermal buffer temporarily increasing its cooling capacity and providing a better thermal stability of the cold finger (“Power Booster mode”). The energy storage units presented here use an enthalpy reservoir based on the high latent heat of the liquid-vapour transition of neon in the temperature range 38 - 44 K to store up to 900 J, and that uses a 6 liters expansion volume at RT in order to work as a closed system. Experimental results in the power booster mode will be described: in this case, the liquid neon cell was directly coupled to the cold finger of the working cryocooler, its volume (12 cm3) allowing it to store 450 J at around 40 K. 10 W heat bursts were applied, leading to liquid evaporation, with quite reduced temperature changes. The liquid neon reservoir can also work as a temporary cold source to be used after stopping the cryocooler, allowing for a vibration-free environment. In this case the enthalpy reservoir implemented (24 cm3) was linked to the cryocooler cold finger through a gas gap heat switch for thermal coupling/decoupling of the cold finger. We will show that, by controlling the enthalpy reservoir’s pressure, 900 J can be stored at a constant temperature of 40 K as in a triple-point ESU.
Resumo:
In this thesis a CMOS low-power and low-voltage RF receiver front-end is presented. The main objective is to design this RF receiver so that it can be powered by a piezoelectric energy harvesting power source, included in a Wireless Sensor Node application. For this type of applications the major requirements are: the low-power and low-voltage operation, the reduced area and cost and the simplicity of the architecture. The system key blocks are the LNA and the mixer, which are studied and optimized with greater detail, achieving a good linearity, a wideband operation and a reduced introduction of noise. A wideband balun LNA with noise and distortion cancelling is designed to work at a 0.6 V supply voltage, in conjunction with a double-balanced passive mixer and subsequent TIA block. The passive mixer operates in current mode, allowing a minimal introduction of voltage noise and a good linearity. The receiver analog front-end has a total voltage conversion gain of 31.5 dB, a 0.1 - 4.3 GHz bandwidth, an IIP3 value of -1.35 dBm, and a noise figure lower than 9 dB. The total power consumption is 1.9 mW and the die area is 305x134.5 m2, using a standard 130 nm CMOS technology.
Resumo:
Calcium carbonate biomineralization is a self-assembly process that has been studied to be applied in the biomedical field to encapsulate biomolecules. Advantages of engineering mineral capsules include improved drug loading efficiencies and protection against external environment. However, common production methods result in heterogeneous capsules and subject biomolecules to heat and vibration which cause irreversible damage. To overcome these issues, a microfluidic device was designed, manufactured and tested in terms of selectivity for water and oil to produce a W/O/W emulsion. During the development of this work there was one critical challenge: the selective functionalization in closed microfluidic channels. Wet chemical oxidation of PDMS with 1M NaOH, confirmed by FTIR, followed by adsorption of polyelectrolytes - PDADMAC/PSS - confirmed by UV-Vis and AFM results, render the surface of PDMS hydrophilic. UV-Vis spectroscopy also confirmed that this modification did not affect PDMS optical properties, making possible to monitor fluids and droplets. More important, with this approach PDMS remains hydrophilic over time. However, due to equipment constrains selectivity in microchannels was not achieved. Therefore, emulsion studies took place with conventional methods. Several systems were tried, with promising results achieved with CaCO3 in-situ precipitation, without the use of polymers or magnesium. This mineral stabilizes oil droplets in water, but not in air due to incomplete capsule formation.
Resumo:
The present paper focuses on a damage identification method based on the use of the second order spectral properties of the nodal response processes. The explicit dependence on the frequency content of the outputs power spectral densities makes them suitable for damage detection and localization. The well-known case study of the Z24 Bridge in Switzerland is chosen to apply and further investigate this technique with the aim of validating its reliability. Numerical simulations of the dynamic response of the structure subjected to different types of excitation are carried out to assess the variability of the spectrum-driven method with respect to both type and position of the excitation sources. The simulated data obtained from random vibrations, impulse, ramp and shaking forces, allowed to build the power spectrum matrix from which the main eigenparameters of reference and damage scenarios are extracted. Afterwards, complex eigenvectors and real eigenvalues are properly weighed and combined and a damage index based on the difference between spectral modes is computed to pinpoint the damage. Finally, a group of vibration-based damage identification methods are selected from the literature to compare the results obtained and to evaluate the performance of the spectral index.
Resumo:
In this study, Ag:SiC nanocermets were prepared via rapid thermal annealing (RTA) of pulsed laser-deposited SiC/Ag/SiC trilayers grown on Si substrate. Atomic force microscope images show that silver nanoparticles (Ag NPs) are formed after RTA, and the size of NPs increases with increasing Ag deposition time (t Ag). Sharp dip observed in the reflectance spectra confirmed the existence of Ag surface plasmons (SPs). The infrared transmission spectra showed an intense and broad absorption band around 780–800 cm−1 that can be assigned to Si-C stretching vibration mode. Influence of t Ag on the spectral characteristics of SP-enhanced photoluminescence (PL) and electrical properties of silicon carbide (SiC) films has been investigated. The maximum PL enhancement by 5.5 times for Ag:SiC nanocermets is achieved when t Ag ≈ 50 s. This enhancement is due to the strong resonant coupling between SiC and the SP oscillations of the Ag NPs. Presence of Ag NPs in SiC also induces a forming-free resistive switching with switching ratio of 2 × 10−2. The analysis of I–V curves demonstrates that the trap-controlled space-charge-limited conduction with filamentary model is the governing mechanism for the resistive switching in nanocerment thin films.
Resumo:
Novel multifunctional porous films have been developed by the integration of magnetic CoFe2O4 (CFO) nanoparticles into poly(vinylidene fluoride)-Trifuoroethylene (P(VDF-TrFE)), taking advantage of the synergies of the magnetostrictive filler and the piezoelectric polymer. The porous films show a piezoelectric response with an effective d33 coefficient of -22 pC/N-1, a maximum magnetization of 12 emu.g-1 and a maximum magnetoelectric coefficient of 9 mV.cm-1.Oe-1. In this way, a multifunctional membrane has been developed suitable for advanced applications ranging from biomedical to water treatment.
Resumo:
Due to the increasing need of low voltage actuators, independent from electrochemical processes, electroactive actuators based on poly(vinylidene fluoride) composites with 10, 25 and 40 % of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C2mim] [NTf2], ionic liquid are prepared by solvent casting and melting. We show that the charge structure of [C2mim] [NTf2] induces the complete piezoelectric -phase crystallization of the PVDF within the composite and decreases its crystallinity fraction significantly. [C2mim] [NTf2] also works as a plasticizer of PVDF, reducing the elastic modulus down to 12 % of the initial value. Moreover, the composites show significant displacement and bending under applied voltages of 2, 5 and 10 Vpp. The displacement and bending of the composite membranes are also evaluated as a function of [C2mim] [NTf2] content and sample thickness. Increasing amounts of ionic liquid result in larger deformations independently of the applied voltage.
Resumo:
The manipulation of electric ordering with applied magnetic fields has been realized on magnetoelectric (ME) materials, however, their ME switching is often accompanied by significant hysteresis and coercivity that represents, for some applications, a severe weakness. To overcome this obstacle, this work focus on the development of a new type of ME polymer nanocomposites that exhibits tailored ME response at room temperature. The multiferroic nanocomposites are based on three different ferrite nanoparticles, Zn0.2Mn0.8Fe2O4 (ZMFO), CoFe2O4 (CFO) and Fe3O4 (FO), dispersed in a piezoelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE), matrix. No substantial differences were detected on the time-stable piezoelectric response of the composites (≈ -28 pC.N−1) with distinct ferrite fillers and for the same ferrite content of 10wt.%. Magnetic hysteresis loops from pure ferrite nanopowders showed different magnetic responses. ME results of the nanocomposite films with 10wt.% ferrite content revealed that the ME induced voltage increases with increasing DC magnetic field until a maximum of 6.5 mV∙cm−1∙Oe−1, at an optimum magnetic field of 0.26 T, and 0.8 mV∙cm−1∙Oe−1, at an optimum magnetic field of 0.15T, for the CFO/P(VDF-TrFE) and FO/P(VDF-TrFE) composites, respectively. On the contrary, the ME response of the ZMFO/P(VDF-TrFE) exposed no hysteresis and high dependence on the ZMFO filler content. Possible innovative applications such as memories and information storage, signal processing, ME sensors and oscillators have been addressed for such ferrite/PVDF nanocomposites.