989 resultados para Pharmaceutical technology
Resumo:
Miniaturization of analytical instrumentation is attracting growing interest in response to the explosive demand for rapid, yet sensitive analytical methods and low-cost, highly automated instruments for pharmaceutical and bioanalyses and environmental monitoring. Microfabrication technology in particular, has enabled fabrication of low-cost microdevices with a high degree of integrated functions, such as sample preparation, chemical reaction, separation, and detection, on a single microchip. These miniaturized total chemical analysis systems (microTAS or lab-on-a-chip) can also be arrayed for parallel analyses in order to accelerate the sample throughput. Other motivations include reduced sample consumption and waste production as well as increased speed of analysis. One of the most promising hyphenated techniques in analytical chemistry is the combination of a microfluidic separation chip and mass spectrometer (MS). In this work, the emerging polymer microfabrication techniques, ultraviolet lithography in particular, were exploited to develop a capillary electrophoresis (CE) separation chip which incorporates a monolithically integrated electrospray ionization (ESI) emitter for efficient coupling with MS. An epoxy photoresist SU-8 was adopted as structural material and characterized with respect to its physicochemical properties relevant to chip-based CE and ESI/MS, namely surface charge, surface interactions, heat transfer, and solvent compatibility. As a result, SU-8 was found to be a favorable material to substitute for the more commonly used glass and silicon in microfluidic applications. In addition, an infrared (IR) thermography was introduced as direct, non-intrusive method to examine the heat transfer and thermal gradients during microchip-CE. The IR data was validated through numerical modeling. The analytical performance of SU-8-based microchips was established for qualitative and quantitative CE-ESI/MS analysis of small drug compounds, peptides, and proteins. The CE separation efficiency was found to be similar to that of commercial glass microchips and conventional CE systems. Typical analysis times were only 30-90 s per sample indicating feasibility for high-throughput analysis. Moreover, a mass detection limit at the low-attomole level, as low as 10E+5 molecules, was achieved utilizing MS detection. The SU-8 microchips developed in this work could also be mass produced at low cost and with nearly identical performance from chip to chip. Until this work, the attempts to combine CE separation with ESI in a chip-based system, amenable to batch fabrication and capable of high, reproducible analytical performance, have not been successful. Thus, the CE-ESI chip developed in this work is a substantial step toward lab-on-a-chip technology.
Resumo:
The ability to deliver the drug to the patient in a safe, efficacious and cost-effective manner depends largely on the physicochemical properties of the active pharmaceutical ingredient (API) in the solid state. In this context, crystallization is of critical importance in pharmaceutical industry, as it defines physical and powder properties of crystalline APIs. An improved knowledge of the various aspects of crystallization process is therefore needed. The overall goal of this thesis was to gain better understanding of the relationships between crystallization, solid-state form and properties of pharmaceutical solids with a focus on a crystal engineering approach to design technological properties of APIs. Specifically, solid-state properties of the crystalline forms of the model APIs, erythromycin A and baclofen, and the influence of solvent on their crystallization behavior were investigated. In addition, the physical phenomena associated with wet granulation and hot-melting processing of the model APIs were examined at the molecular level. Finally, the effect of crystal habit modification of a model API on its tabletting properties was evaluated. The thesis enabled the understanding of the relationship between the crystalline forms of the model APIs, which is of practical importance for solid-state control during processing and storage. Moreover, a new crystalline form, baclofen monohydrate, was discovered and characterized. Upon polymorph screening, erythromycin A demonstrated high solvate-forming propensity thus emphasizing the need for careful control of the solvent effects during formulation. The solvent compositions that yield the desirable crystalline form of erythromycin A were defined. Furthermore, new examples on solvent-mediated phase transformations taking place during wet granulation of baclofen and hot-melt processing of erythromycin A dihydrate with PEG 6000 are reported. Since solvent-mediated phase transformations involve the crystallization of a stable phase and hence affect the dissolution kinetics and possibly absorption of the API these transformations must be well documented. Finally, a controlled-crystallization method utilizing HPMC as a crystal habit modifier was developed for erythromycin A dihydrate. The crystals with modified habit were shown to posses improved compaction properties as compared with those of unmodified crystals. This result supports the idea of morphological crystal engineering as a tool for designing technological properties of APIs and is of utmost practical interest.
Resumo:
This thesis discusses the use of sub- and supercritical fluids as the medium in extraction and chromatography. Super- and subcritical extraction was used to separate essential oils from herbal plant Angelica archangelica. The effect of extraction parameters was studied and sensory analyses of the extracts were done by an expert panel. The results of the sensory analyses were compared to the analytically determined contents of the extracts. Sub- and supercritical fluid chromatography (SFC) was used to separate and purify high-value pharmaceuticals. Chiral SFC was used to separate the enantiomers of racemic mixtures of pharmaceutical compounds. Very low (cryogenic) temperatures were applied to substantially enhance the separation efficiency of chiral SFC. The thermodynamic aspects affecting the resolving ability of chiral stationary phases are briefly reviewed. The process production rate which is a key factor in industrial chromatography was optimized by empirical multivariate methods. General linear model was used to optimize the separation of omega-3 fatty acid ethyl esters from esterized fish oil by using reversed-phase SFC. Chiral separation of racemic mixtures of guaifenesin and ferulic acid dimer ethyl ester was optimized by using response surface method with three variables per time. It was found that by optimizing four variables (temperature, load, flowate and modifier content) the production rate of the chiral resolution of racemic guaifenesin by cryogenic SFC could be increased severalfold compared to published results of similar application. A novel pressure-compensated design of industrial high pressure chromatographic column was introduced, using the technology developed in building the deep-sea submersibles (Mir 1 and 2). A demonstration SFC plant was built and the immunosuppressant drug cyclosporine A was purified to meet the requirements of US Pharmacopoeia. A smaller semi-pilot size column with similar design was used for cryogenic chiral separation of aromatase inhibitor Finrozole for use in its development phase 2.
Resumo:
The Bernoulli/exponential target process is considered. Such processes have been found useful in modelling the search for active compounds in pharmaceutical research. An inequality is presented which improves a result of Gittins (1989), thus providing a better approximation to the Gittins indices which define the optimal search policy.
Resumo:
This study extends understanding of consumers' decisions to adopt transformative services delivered via technology. It incorporates competitive effects into the model of goal-directed behavior which, in keeping with the majority of consumer decision making models, neglects to explicitly account for competition. A goal-level operationalization of competition, incorporating both direct and indirect competition, is proposed. A national web-based survey collected data from 431 respondents about their decisions to adopt mental health services delivered via mobile phone. The findings show that the extent to which consumers perceived using these transformative services to be more instrumental to achieving their goals than competition had the greatest impact on their adoption decisions. This finding builds on the limited empirical evidence for the inclusion of competitive effects to more fully explain consumers' decisions to adopt technology-based and other services. It also provides support for a broader operationalization of competition with respect to consumers' personal goals.
Resumo:
The article describes a generalized estimating equations approach that was used to investigate the impact of technology on vessel performance in a trawl fishery during 1988-96, while accounting for spatial and temporal correlations in the catch-effort data. Robust estimation of parameters in the presence of several levels of clustering depended more on the choice of cluster definition than on the choice of correlation structure within the cluster. Models with smaller cluster sizes produced stable results, while models with larger cluster sizes, that may have had complex within-cluster correlation structures and that had within-cluster covariates, produced estimates sensitive to the correlation structure. The preferred model arising from this dataset assumed that catches from a vessel were correlated in the same years and the same areas, but independent in different years and areas. The model that assumed catches from a vessel were correlated in all years and areas, equivalent to a random effects term for vessel, produced spurious results. This was an unexpected finding that highlighted the need to adopt a systematic strategy for modelling. The article proposes a modelling strategy of selecting the best cluster definition first, and the working correlation structure (within clusters) second. The article discusses the selection and interpretation of the model in the light of background knowledge of the data and utility of the model, and the potential for this modelling approach to apply in similar statistical situations.
Resumo:
Fluidised bed-heat pump drying technology offers distinctive advantages over the existing drying technology employed in the Australian food industry. However, as is the case with many other examples of innovations that have had clear relative advantages, the rates of adoption and diffusion of this technology have been very slow. "Why does this happen?" is the theme of this research study that has been undertaken with an objective to analyse a range of issues related to the market acceptance of technological innovations. The research methodology included the development of an integrated conceptual model based on an extensive review of literature in the areas of innovation diffusion, technology transfer and industrial marketing. Three major determinants associated with the market acceptance of innovations were identified as the characteristics of the innovation, adopter information processing capability and the influence of the innovation supplier on the adoption process. This was followed by a study involving more than 30 small and medium enterprises identified as potential adopters of fluidised bed-heat pump drying technology in the Australian food industry. The findings revealed that judgment was the key evaluation strategy employed by potential adopters in the particular industry sector. Further, it was evidenced that the innovations were evaluated against a predetermined criteria covering a range of aspects with emphasis on a selected set of attributes of the innovation. Implication of these findings on the commercialisation of fluidised bed-heat pump drying technology was established, and a series of recommendations was made to the innovation supplier (DPI/FT) enabling it to develop an effective commercialisation strategy.
Resumo:
Acoustic impedance of a termination, or of a passive subsystem, needs to be measured not only for acoustic lining materials but also in the exhaust systems of flow machinery, where mean flow introduces peculiar problems. Out of the various methods of measurement of acoustic impedance, the discrete frequency, steady state, impedance tube method [1] is most reliable, though time consuming, and requires no special instrumentation.
Resumo:
A panel of 19 monoclonal antibodies (mAbs) was used to study the immunological variability of Lettuce mosaic virus (LMV), a member of the genus Potyvirus, and to perform a first epitope characterization of this virus. Based on their specificity of recognition against a panel of 15 LMV isolates, the mAbs could be clustered in seven reactivity groups. Surface plasmon resonance analysis indicated the presence, on the LMV particles, of at least five independent recognition/binding regions, correlating with the seven mAbs reactivity groups. The results demonstrate that LMV shows significant serological variability and shed light on the LMV epitope structure. The various mAbs should prove a new and efficient tool for LMV diagnostic and field epidemiology studies.
Resumo:
The integration of technology in care is core business in nursing and this role requires that we must understand and use technology informed by evidence that goes much deeper and broader than actions and behaviours. We need to delve more deeply into its complexity because there is nothing minor or insignificant about technology as a major influence in healthcare outcomes and experiences. Evidence is needed that addresses technology and nursing from perspectives that examine the effects of technology, especially related to increasing demands for efficiency, the relationship of technology to nursing and caring, and a range of philosophical questions associated with empowering people in their healthcare choices. Specifically, there is a need to confront in practice the ways technique influences care. Technique is the creation of a kind of thinking that is necessary for contemporary healthcare technology to develop and be applied in an efficient and rational manner. Technique is not an entity or specific thing, but rather a way of thinking that seeks to shape and organize nursing activity, and manage efficiently individual difference(s) in care. It emphasizes predetermined causal relationships, conformity, and sameness of product, process, and thought. In response is needed a radical vision of nursing that attempts in a real sense to ensure we meet the needs of individuals and their community. Activism and advocacy are needed, and a willingness to create a certain detachment from the imperatives that technique demands. It is argued that our responsibility as nurses is to respond in practice to the errors, advantages, difficulties, and temptations of technology for the benefit of those who most need our assistance and care.
Resumo:
This book investigates and reveals the interplay between smart technologies and cities, a topic that has gained incredible currency in urban studies in recent years. Beginning with an elaboration of the historical significance of technologies in economic growth, social progress and urban development, the author then goes on to introduce the most prominent smart urban information technologies before demonstrating the use of these technologies in various smart urban systems. The book then showcases some of the most significant cases of smart city best practice from across the globe before discussing the magnitude and prospects of smart technologies and systems for our cities and societies. "The interplay between smart urban technologies and city development is a relatively uncharted territory. Technology and the City aims to fill that gap, exploring the growing importance of smart technologies and systems in contemporary cities, and providing an in-depth understanding of both theoretical and practical aspects of smart urban technology adoption, and its implications for our cities. Beginning with an elaboration of the historical significance of technologies in economic growth, social progress and urban development, Yigitcanlar introduces the most prominent smart urban information technologies. The book showcases significant smart city practices from across the globe that uses smart urban technologies and systems most effectively. It explores the role of these technologies and asks how they can be adopted into the planning, development and management processes of cities for sustainable urban futures. This pioneering volume contributes to the conceptualisation and practice of smart technology and system adoption in our cities by disseminating both conceptual and empirical research findings with real-world best practice applications. With a multidisciplinary approach to themes of technology and urban development, this book is a key reference source for scholars, practitioners, consultants, city officials, policymakers and urban technology enthusiasts."--Publisher website
Resumo:
Diversification and expansion of global higher education in the 21st century, has resulted in Learning Landscapes for architectural education that can no longer be sustained by the traditional model. Changes have resulted because of surging student numbers, extensions to traditional curricula, evolving competency standards and accreditation requirements, and modified geographical and pedagogical boundaries. The influx of available new technology has helped to democratise knowledge, transforming when, where and how learning takes place. Pressures on government funded higher education budgets highlight the need for a critical review of the current approach to the design and use of learning environments. Efficient design of physical space contributes significantly to savings in provision, management and use of facilities, while also potentially improving pedagogical quality. The purpose of this research is to identify emerging trends in the design of future Learning Landscapes for architectural education in Australasia; to understand where and how students of architecture are likely to learn, in the future context. It explores the important linkages between space, place, pedagogy, technology and context, using a multi methodological qualitative research approach. An Australasian context study will explore the Learning Landscapes of 23 Schools of Architecture across Australia, New Zealand and Papua New Guinea. The focus of this paper is on the methodology which is being employed to undertake dynamic data collection for the study. The research will be determined through mapping all forms of architectural learning environments, pedagogical approaches and contextual issues, to bridge the gap between academic theory, and architectural design practice. An initial understanding that pedagogy is an intrinsic component imbedded within the design of learning environments, will play an important role. Active learning environments which are exemplified by the architectural design studio, support dynamic project based and collaborative connected learning models. These have recently become a lot more common in disciplines outside of design and the arts. It is anticipated, therefore, that the implications for this research may well have a positive impact far beyond the confines of the architectural studio learning environment.
Resumo:
Public-private partnerships (PPPs) have generated a lot of interest from governments around the world for leveraging private sector involvement in developing and sustaining public infrastructure and services. Initially, PPPs were favoured by transport, energy, and other large infrastructure-intensive sectors. More recently, the concept has been expanded to include social sectors such as education.