994 resultados para Perrin, André
Resumo:
Understanding the dynamics of disease spread is essential in contexts such as estimating load on medical services, as well as risk assessment and interven- tion policies against large-scale epidemic outbreaks. However, most of the information is available after the outbreak itself, and preemptive assessment is far from trivial. Here, we report on an agent-based model developed to investigate such epidemic events in a stylised urban environment. For most diseases, infection of a new individual may occur from casual contact in crowds as well as from repeated interactions with social partners such as work colleagues or family members. Our model therefore accounts for these two phenomena. Given the scale of the system, efficient parallel computing is required. In this presentation, we focus on aspects related to paralllelisation for large networks generation and massively multi-agent simulations.
Resumo:
Several algorithms and techniques widely used in Computer Science have been adapted from, or inspired by, known biological phenomena. This is a consequence of the multidisciplinary background of most early computer scientists. The field has now matured, and permits development of tools and collaborative frameworks which play a vital role in advancing current biomedical research. In this paper, we briefly present examples of the former, and elaborate upon two of the latter, applied to immunological modelling and as a new paradigm in gene expression.
Resumo:
In this paper, we investigate the effect of mobility constraints on epidemic broad-cast mechanisms in DTNs (Delay-Tolerant Networks). Major factors affecting epidemic broadcast performances are its forwarding algorithm and node mobility. The impact of forwarding algorithm and node mobility on epidemic broadcast mechanisms has been actively studied in the literature, but those studies use generally unconstrained mobility models. The objective of this paper is therefore to quantitatively investigate the effect of mobility constraints on epidemic broadcast mechanisms. We evaluate the performances of P-BCAST (PUSH-based BroadCast), SA-BCAST (Self-Adaptive BroadCast), and HP-BCAST (History-based P-BCAST) with a random waypoint mobility model with mobility constraints.
Resumo:
Communication and information diffusion are typically difficult in situations where centralised structures may become unavailable. In this context, decentralised communication based on epidemic broadcast becomes essential. It can be seen as an opportunity-based flooding for message broadcasting within a swarm of autonomous agents, where each entity tries to share the information it possesses with its neighbours. As an example of applications for such a system, we present simulation results where agents have to coordinate to map an unknown area.
Resumo:
In this paper, we investigate the effect of mobility constraints on epidemic broadcast mechanisms in DTNs (Delay-Tolerant Networks). Major factors affecting epidemic broadcast performances are its forwarding algorithm and node mobility. The impact of forwarding algorithm and node mobility on epidemic broadcast mechanisms has been actively studied in the literature, but those studies generally use unconstrained mobility models. The objective of this paper is therefore to quantitatively investigate the effect of mobility constraints on epidemic broadcast mechanisms. We evaluate the performances of three classes of epidemic broadcast mechanisms - P-BCAST (PUSH-based BroadCast), SA-BCAST (Self-Adaptive BroadCast), and HP-BCAST (History-based P-BCAST) - with a random waypoint mobility model with mobility constraints. Our finding includes that the existence of mobility constraints significantly improves the reach ability and dissemination speed of epidemic broadcast mechanisms while degrading their efficiency.
Resumo:
In some delay-tolerant communication systems such as vehicular ad-hoc networks, information flow can be represented as an infectious process, where each entity having already received the information will try to share it with its neighbours. The random walk and random waypoint models are popular analysis tools for these epidemic broadcasts, and represent two types of random mobility. In this paper, we introduce a simulation framework investigating the impact of a gradual increase of bias in path selection (i.e. reduction of randomness), when moving from the former to the latter. Randomness in path selection can significantly alter the system performances, in both regular and irregular network structures. The implications of these results for real systems are discussed in details.
Resumo:
One of the main challenges in data analytics is that discovering structures and patterns in complex datasets is a computer-intensive task. Recent advances in high-performance computing provide part of the solution. Multicore systems are now more affordable and more accessible. In this paper, we investigate how this can be used to develop more advanced methods for data analytics. We focus on two specific areas: model-driven analysis and data mining using optimisation techniques.
Resumo:
As computational models in fields such as medicine and engineering get more refined, resource requirements are increased. In a first instance, these needs have been satisfied using parallel computing and HPC clusters. However, such systems are often costly and lack flexibility. HPC users are therefore tempted to move to elastic HPC using cloud services. One difficulty in making this transition is that HPC and cloud systems are different, and performance may vary. The purpose of this study is to evaluate cloud services as a means to minimise both cost and computation time for large-scale simulations, and to identify which system properties have the most significant impact on performance. Our simulation results show that, while the performance of Virtual CPU (VCPU) is satisfactory, network throughput may lead to difficulties.
Resumo:
Most real-life data analysis problems are difficult to solve using exact methods, due to the size of the datasets and the nature of the underlying mechanisms of the system under investigation. As datasets grow even larger, finding the balance between the quality of the approximation and the computing time of the heuristic becomes non-trivial. One solution is to consider parallel methods, and to use the increased computational power to perform a deeper exploration of the solution space in a similar time. It is, however, difficult to estimate a priori whether parallelisation will provide the expected improvement. In this paper we consider a well-known method, genetic algorithms, and evaluate on two distinct problem types the behaviour of the classic and parallel implementations.
Resumo:
In providing simultaneous information on expression profiles for thousands of genes, microarray technologies have, in recent years, been largely used to investigate mechanisms of gene expression. Clustering and classification of such data can, indeed, highlight patterns and provide insight on biological processes. A common approach is to consider genes and samples of microarray datasets as nodes in a bipartite graphs, where edges are weighted e.g. based on the expression levels. In this paper, using a previously-evaluated weighting scheme, we focus on search algorithms and evaluate, in the context of biclustering, several variations of Genetic Algorithms. We also introduce a new heuristic “Propagate”, which consists in recursively evaluating neighbour solutions with one more or one less active conditions. The results obtained on three well-known datasets show that, for a given weighting scheme,optimal or near-optimal solutions can be identified.
Resumo:
Systems-level identification and analysis of cellular circuits in the brain will require the development of whole-brain imaging with single-cell resolution. To this end, we performed comprehensive chemical screening to develop a whole-brain clearing and imaging method, termed CUBIC (clear, unobstructed brain imaging cocktails and computational analysis). CUBIC is a simple and efficient method involving the immersion of brain samples in chemical mixtures containing aminoalcohols, which enables rapid whole-brain imaging with single-photon excitation microscopy. CUBIC is applicable to multicolor imaging of fluorescent proteins or immunostained samples in adult brains and is scalable from a primate brain to subcellular structures. We also developed a whole-brain cell-nuclear counterstaining protocol and a computational image analysis pipeline that, together with CUBIC reagents, enable the visualization and quantification of neural activities induced by environmental stimulation. CUBIC enables time-course expression profiling of whole adult brains with single-cell resolution.
Resumo:
Models of the mammalian clock have traditionally been based around two feedback loops-the self-repression of Per/Cry by interfering with activation by BMAL/CLOCK, and the repression of Bmal/Clock by the REV-ERB proteins. Recent experimental evidence suggests that the D-box, a transcription factor binding site associated with daytime expression, plays a larger role in clock function than has previously been understood. We present a simplified clock model that highlights the role of the D-box and illustrate an approach for finding maximum-entropy ensembles of model parameters, given experimentally imposed constraints. Parameter variability can be mitigated using prior probability distributions derived from genome-wide studies of cellular kinetics. Our model reproduces predictions concerning the dual regulation of Cry1 by the D-box and Rev-ErbA/ROR response element (RRE) promoter elements and allows for ensemble-based predictions of phase response curves (PRCs). Nonphotic signals such as Neuropeptide Y (NPY) may act by promoting Cry1 expression, whereas photic signals likely act by stimulating expression from the E/E' box. Ensemble generation with parameter probability restraints reveals more about a model's behavior than a single optimal parameter set.
Resumo:
The development of whole-body imaging at single-cell resolution enables system-level approaches to studying cellular circuits in organisms. Previous clearing methods focused on homogenizing mismatched refractive indices of individual tissues, enabling reductions in opacity but falling short of achieving transparency. Here, we show that an aminoalcohol decolorizes blood by efficiently eluting the heme chromophore from hemoglobin. Direct transcardial perfusion of an aminoalcohol-containing cocktail that we previously termed CUBIC coupled with a 10 day to 2 week clearing protocol decolorized and rendered nearly transparent almost all organs of adult mice as well as the entire body of infant and adult mice. This CUBIC-perfusion protocol enables rapid whole-body and whole-organ imaging at single-cell resolution by using light-sheet fluorescent microscopy. The CUBIC protocol is also applicable to 3D pathology, anatomy, and immunohistochemistry of various organs. These results suggest that whole-body imaging of colorless tissues at high resolution will contribute to organism-level systems biology.
Resumo:
Epigenetic changes correspond to heritable modifications of the chromosome structure, which do not involve alteration of the DNA sequence but do affect gene expression. These mechanisms play an important role in normal cell differentiation, but aberration is associated also with several diseases, including cancer and neural disorders. In consequence, despite intensive studies in recent years, the contribution of modifications remains largely unquantified due to overall system complexity and insufficient data. Computational models can provide powerful auxiliary tools to experimentation, not least as scales from the sub-cellular through cell populations (or to networks of genes) can be spanned. In this paper, the challenges to development, of realistic cross-scale models, are discussed and illustrated with respect to current work.
Resumo:
Vertebral fracture risk is a heritable complex trait. The aim of this study was to identify genetic susceptibility factors for osteoporotic vertebral fractures applying a genome-wide association study (GWAS) approach. The GWAS discovery was based on the Rotterdam Study, a population-based study of elderly Dutch individuals aged >55years; and comprising 329 cases and 2666 controls with radiographic scoring (McCloskey-Kanis) and genetic data. Replication of one top-associated SNP was pursued by de-novo genotyping of 15 independent studies across Europe, the United States, and Australia and one Asian study. Radiographic vertebral fracture assessment was performed using McCloskey-Kanis or Genant semi-quantitative definitions. SNPs were analyzed in relation to vertebral fracture using logistic regression models corrected for age and sex. Fixed effects inverse variance and Han-Eskin alternative random effects meta-analyses were applied. Genome-wide significance was set at p<5×10-8. In the discovery, a SNP (rs11645938) on chromosome 16q24 was associated with the risk for vertebral fractures at p=4.6×10-8. However, the association was not significant across 5720 cases and 21,791 controls from 14 studies. Fixed-effects meta-analysis summary estimate was 1.06 (95% CI: 0.98-1.14; p=0.17), displaying high degree of heterogeneity (I2=57%; Qhet p=0.0006). Under Han-Eskin alternative random effects model the summary effect was significant (p=0.0005). The SNP maps to a region previously found associated with lumbar spine bone mineral density (LS-BMD) in two large meta-analyses from the GEFOS consortium. A false positive association in the GWAS discovery cannot be excluded, yet, the low-powered setting of the discovery and replication settings (appropriate to identify risk effect size >1.25) may still be consistent with an effect size <1.10, more of the type expected in complex traits. Larger effort in studies with standardized phenotype definitions is needed to confirm or reject the involvement of this locus on the risk for vertebral fractures.