669 resultados para Periprosthetic capsule
Resumo:
Objective: The objective of the study was to characterise the population pharmacokinetic properties of itraconazole and its active metabolite hydroxyitraconazole in a representative paediatric population of cystic fibrosis and bone marrow transplant (BMT) patients and to identify patient characteristics influencing the pharmacokinetics of itraconazole. The ultimate goals were to determine the relative bioavailability between the two oral formulations (capsules vs oral solution) and to optimise dosing regimens in these patients. Methods: All paediatric patients with cystic fibrosis or patients undergoing BMT at The Royal Children's Hospital, Brisbane, QLD, Australia, who were prescribed oral itraconazole for the treatment of allergic bronchopulmonary aspergillosis (cystic fibrosis patients) or for prophylaxis of any fungal infection (BMT patients) were eligible for the study. Blood samples were taken from the recruited patients as per an empirical sampling design either during hospitalisation or during outpatient clinic visits. ltraconazole and hydroxy-itraconazole plasma concentrations were determined by a validated high-performance liquid chromatography assay with fluorometric detection. A nonlinear mixed-effect modelling approach using the NONMEM software to simultaneously describe the pharmacokinetics of itraconazole and its metabolite. Results: A one-compartment model with first-order absorption described the itraconazole data, and the metabolism of the parent drug to hydroxy-itraconazole was described by a first-order rate constant. The metabolite data also showed one-compartment characteristics with linear elimination. For itraconazole the apparent clearance (CLitraconazole) was 35.5 L/hour, the apparent volume of distribution (V-d(itraconazole)) was 672L, the absorption rate constant for the capsule formulation was 0.0901 h(-1) and for the oral solution formulation was 0.96 h-1. The lag time was estimated to be 19.1 minutes and the relative bioavailability between capsules and oral solution (F-rel) was 0.55. For the metabolite, volume of distribution, V-m/(F (.) f(m)), and clearance, CL/(F (.) fm), were 10.6L and 5.28 L/h, respectively. The influence of total bodyweight was significant, added as a covariate on CLitraconazoie/F and V-d(itraconazole)/F (standardised to a 70kg person) using allometric three-quarter power scaling on CLitraconazole/F, which therefore reflected adult values. The unexplained between-subject variability (coefficient of variation %) was 68.7%, 75.8%, 73.4% and 61.1% for CLitraconazoie/F, Vd(itraconazole)/F, CLm/(F (.) fm) and F-rel, respectively. The correlation between random effects of CLitraconazole and Vd((itraconazole)) was 0.69. Conclusion: The developed population pharmacokinetic model adequately described the pharmacokinetics of itraconazole and its active metabolite, hydroxy-itraconazole, in paediatric patients with either cystic fibrosis or undergoing BMT. More appropriate dosing schedules have been developed for the oral solution and the capsules to secure a minimum therapeutic trough plasma concentration of 0.5 mg/L for these patients.
Resumo:
The purpose of this research was to investigate the retention of flavour volatiles encapsulated in water-insoluble systems during high temperature–short time extrusion process. A protein precipitation method was used to produce water-insoluble capsules encapsulating limonene, and the capsules were added to the extruder feed material (cornstarch). A twin-screw extruder was used to evaluate the effect of capsule level of addition (0–5%), barrel temperature (125–145 °C) and screw speed (145–175 r.p.m.) on extruder parameters (torque, die pressure, specific mechanical energy, residence time distribution) and extrudate properties [flavour retention, texture, colour, density, expansion, water absorption index, water solubility index (WSI)]. Capsule level had a significant effect on extrusion conditions, flavour retention and extrudate physical properties. Flavour retention increased with the increase in capsule level from 0% to 2.5%, reached a maximum value at capsule level of 2.5% and decreased when the capsule level increased from 2.5% to 5%. The die pressure, torque, expansion ratio, hardness and WSI exhibited the opposite effect with the presence of capsules.
Resumo:
Although poly(alpha-hydroxy esters), especially the PLGA family of lactic acid/glycolic acid copolymers, have many properties which make them promising materials for tissue engineering, the inherent chemistry of surfaces made from these particular polymers is problematic. In vivo, they promote a strong foreign-body response as a result of nonspecific adsorption and denaturation of serum proteins, which generally results in the formation of a nonfunctional fibrous capsule. Surface modification post-production of the scaffolds is an often-utilized approach to solving this problem, conceptually allowing the formation of a scaffold with mechanical properties defined by the bulk material and molecular-level interactions defined by the modified surface properties. A promising concept is the so-called blank slate: essentially a surface that is rendered resistant to nonspecific protein adsorption but can be readily activated to covalently bind bio-functional molecules such as extracellular matrix proteins, growth factors or polysaccharides. This study focuses on the use of the quartz crystal microbalance (QCM) to follow the layer-by-layer (LbL) electrostatic deposition of high molecular weight hyaluronic acid and chitosan onto PLGA surfaces rendered positively charged by aminolysis, to form a robust, protein-resistant coating. We further show that this surface may be further functionalized via the covalent attachment of collagen IV, which may then be used as a template for the self-assembly of basement membrane components from dilute Matrigel. The response of NIH-3T3 fibroblasts to these surfaces was also followed and shown to closely parallel the results observed in the QCM.
Resumo:
Background: Oral itraconazole (ITRA) is used for the treatment of allergic bronchopulmonary aspergillosis in patients with cystic fibrosis (CF) because of its antifungal activity against Aspergillus species. ITRA has an active hydroxy-metabolite (OH-ITRA) which has similar antifungal activity. ITRA is a highly lipophilic drug which is available in two different oral formulations, a capsule and an oral solution. It is reported that the oral solution has a 60% higher relative bioavailability. The influence of altered gastric physiology associated with CF on the pharmacokinetics (PK) of ITRA and its metabolite has not been previously evaluated. Objectives: 1) To estimate the population (pop) PK parameters for ITRA and its active metabolite OH-ITRA including relative bioavailability of the parent after administration of the parent by both capsule and solution and 2) to assess the performance of the optimal design. Methods: The study was a cross-over design in which 30 patients received the capsule on the first occasion and 3 days later the solution formulation. The design was constrained to have a maximum of 4 blood samples per occasion for estimation of the popPK of both ITRA and OH-ITRA. The sampling times for the population model were optimized previously using POPT v.2.0.[1] POPT is a series of applications that run under MATLAB and provide an evaluation of the information matrix for a nonlinear mixed effects model given a particular design. In addition it can be used to optimize the design based on evaluation of the determinant of the information matrix. The model details for the design were based on prior information obtained from the literature, which suggested that ITRA may have either linear or non-linear elimination. The optimal sampling times were evaluated to provide information for both competing models for the parent and metabolite and for both capsule and solution simultaneously. Blood samples were assayed by validated HPLC.[2] PopPK modelling was performed using FOCE with interaction under NONMEM, version 5 (level 1.1; GloboMax LLC, Hanover, MD, USA). The PK of ITRA and OH‑ITRA was modelled simultaneously using ADVAN 5. Subsequently three methods were assessed for modelling concentrations less than the LOD (limit of detection). These methods (corresponding to methods 5, 6 & 4 from Beal[3], respectively) were (a) where all values less than LOD were assigned to half of LOD, (b) where the closest missing value that is less than LOD was assigned to half the LOD and all previous (if during absorption) or subsequent (if during elimination) missing samples were deleted, and (c) where the contribution of the expectation of each missing concentration to the likelihood is estimated. The LOD was 0.04 mg/L. The final model evaluation was performed via bootstrap with re-sampling and a visual predictive check. The optimal design and the sampling windows of the study were evaluated for execution errors and for agreement between the observed and predicted standard errors. Dosing regimens were simulated for the capsules and the oral solution to assess their ability to achieve ITRA target trough concentration (Cmin,ss of 0.5-2 mg/L) or a combined Cmin,ss for ITRA and OH-ITRA above 1.5mg/L. Results and Discussion: A total of 241 blood samples were collected and analysed, 94% of them were taken within the defined optimal sampling windows, of which 31% where taken within 5 min of the exact optimal times. Forty six per cent of the ITRA values and 28% of the OH-ITRA values were below LOD. The entire profile after administration of the capsule for five patients was below LOD and therefore the data from this occasion was omitted from estimation. A 2-compartment model with 1st order absorption and elimination best described ITRA PK, with 1st order metabolism of the parent to OH-ITRA. For ITRA the clearance (ClItra/F) was 31.5 L/h; apparent volumes of central and peripheral compartments were 56.7 L and 2090 L, respectively. Absorption rate constants for capsule (kacap) and solution (kasol) were 0.0315 h-1 and 0.125 h-1, respectively. Comparative bioavailability of the capsule was 0.82. There was no evidence of nonlinearity in the popPK of ITRA. No screened covariate significantly improved the fit to the data. The results of the parameter estimates from the final model were comparable between the different methods for accounting for missing data, (M4,5,6)[3] and provided similar parameter estimates. The prospective application of an optimal design was found to be successful. Due to the sampling windows, most of the samples could be collected within the daily hospital routine, but still at times that were near optimal for estimating the popPK parameters. The final model was one of the potential competing models considered in the original design. The asymptotic standard errors provided by NONMEM for the final model and empirical values from bootstrap were similar in magnitude to those predicted from the Fisher Information matrix associated with the D-optimal design. Simulations from the final model showed that the current dosing regimen of 200 mg twice daily (bd) would provide a target Cmin,ss (0.5-2 mg/L) for only 35% of patients when administered as the solution and 31% when administered as capsules. The optimal dosing schedule was 500mg bd for both formulations. The target success for this dosing regimen was 87% for the solution with an NNT=4 compared to capsules. This means, for every 4 patients treated with the solution one additional patient will achieve a target success compared to capsule but at an additional cost of AUD $220 per day. The therapeutic target however is still doubtful and potential risks of these dosing schedules need to be assessed on an individual basis. Conclusion: A model was developed which described the popPK of ITRA and its main active metabolite OH-ITRA in adult CF after administration of both capsule and solution. The relative bioavailability of ITRA from the capsule was 82% that of the solution, but considerably more variable. To incorporate missing data, using the simple Beal method 5 (using half LOD for all samples below LOD) provided comparable results to the more complex but theoretically better Beal method 4 (integration method). The optimal sparse design performed well for estimation of model parameters and provided a good fit to the data.
Resumo:
Objectives: The aim of the study was to characterise the population pharmacokinetics (popPK) properties of itraconazole (ITRA) and its active metabolite hydroxy-ITRA in a representative paediatric population of cystic fibrosis (CF) and bone marrow transplant (BMT) patients. The goals were to determine the relative bioavailability between the two oral formulations, and to explore improved dosage regimens in these patients. Methods: All paediatric patients with CF taking oral ITRA for the treatment of allergic bronchopulmonary aspergillosis and patients undergoing BMT who were taking ITRA for prophylaxis of any fungal infection were eligible for the study. A minimum of two blood samples were drawn after the capsules and also after switching to oral solution, or vice versa. ITRA and hydroxy-ITRA plasma concentrations were measured by HPLC[1]. A nonlinear mixed-effect modelling approach (NONMEM 5.1.1) was used to describe the PK of ITRA and hydroxy-ITRA simultaneously. Simulations were used to assess dosing strategies in these patients. Results: Forty-nine patients (29CF, 20 BMT) were recruited to the study who provided 227 blood samples for the population analysis. A 1-compartment model with 1st order absorption and elimination best described ITRA kinetics, with 1st order conversion to hydroxy-ITRA. For ITRA, the apparent clearance (ClItra/F) and volume of distribution (Vitra/F) was 35.5L/h and 672L, respectively; the absorption rate constant for the capsule formulation was 0.0901 h-1 and for the oral solution formulation it was 0.959 h-1. The capsule comparative bioavailability (vs. solution) was 0.55. For hydroxy-ITRA, the apparent volume of distribution and clearance were 10.6 L and 5.28 L/h, respectively. Of several screened covariates only allometrically scaled total body weight significantly improved the fit to the data. No difference between the two populations was found. Conclusion: The developed popPK model adequately described the pharmacokinetics of ITRA and hydroxy-ITRA in paediatric patients with CF and patients undergoing BMT. High inter-patient variability confirmed previous data in CF[2], leukaemia and BMT[3] patients. From the population model, simulations showed the standard dose (5 mg/kg/day) needs to be doubled for the solution formulation and even 4 times more given of the capsules to achieve an adequate target therapeutic trough plasma concentration of 0.5 mg/L[4] in these patients.
Resumo:
Monoclonal and polyclonaI antibodies have been produced for use in immunological assays for the detection of Burkholderia pseudomallei and Burkholderia mallei. Monoclonal antibodies recognising a high molecular weight polysaccharide material found in some strains of both species have been shown to be effective in recognising B. pseudomallei and B. mallei and distinguishing them from other organisms. The high molecular weight polysaccharide material is thought to be the capsule of B. pseudomallei and B. mallei and may have important links with virulence. B. pseudomallei and B. mallei are known to be closely related, sharing many epitopes, but antigenic variation has been demonstrated within both the species. The lipopolysaccharide from strains of B. pseudomal/ei and B. mallei has been isolated and the silver stain profiles found to be visually very similar. A monoclonal antibody raised to B. mallei LPS has been found to recognise both B. mallei and B. pseudomallei strains. However, in a small number of B. pseudomallei strains a visually atypical LPS profile has been demonstrated. A monoclonal ant ibody rai sed against this atypical LPS showed no recognition of the typical LPS profile of either B. mallei or B. pseudomallei. This atypical LPS structure has not been reported and may be immunologically distinct from the typical LPS. Molecular biology and antibody engineering techniques have been used in an attempt to produce single-chain antibody fragments reactive to B. pseudomallei. Sequencing of one of the single-chain antibody fragments produced showed high homology with murine immunoglobulin genes, but none of the single-chain antibody fragments were found to be specific to B. pselldomallei.
Resumo:
Cell surface properties of the basidiomycete yeast Cryptococcus neoformans were investigated with a combination of novel and well proven approaches. Non-specific cell adhesion forces, as well as exposed carbohydrate and protein moieties potentially associated with specific cellular interaction, were analysed. Experimentation and analysis employed cryptococcal cells of different strains, capsular status and culture age. Investigation of cellular charge by particulate microelectrophoresis revealed encapsulated yeast forms of C. neoformans manifest a distinctive negative charge regardless of the age of cells involved; in turn, the neutral charge of acapsulate yeasts confirmed that the polysaccharide capsule, and not the cell wall, was responsible for this occurrence. Hydrophobicity was measured by MATH and HICH techniques, as well as by the attachment of polystyrene microspheres. All three techniques, where applicable, found C. neoformans yeast to be consistently hydrophilic; this state varied little regardless of strain and culture age. Cell surface carbohydrates and protein were investigated with novel fluorescent tagging protocols, flow cytometry and confocal microscopy. Cell surface carbohydrate was identified by controlled oxidation in association with biotin hydrazide and fluorescein-streptavidin tagging. Marked amounts of carbohydrate were measured and observed on the cell wall surface of cryptococcal yeasts. Furthermore, tagging of carbohydrates with selective fluorescent lectins supported the identification, measurement and observation of substantial amounts of mannose, glucose and N-acetyl-glucosamine. Cryptococcal cell surface protein was identified using sulfo-NHS-biotin with fluorescein-streptavidin, and then readily quantified by flow cytometry. Confocal imaging of surface exposed carbohydrate and protein revealed common localised areas of vivid fluorescence associated with buds, bud scars and nascent daughter cells. Carbohydrate and protein fluorescence often varied between strains, culture age and capsule status of cells examined. Finally, extension of protein tagging techniques resulted in the isolation and extraction of two biotinylated proteins from the yeast cell wall surface of an acapsulate strain of C.neoformans.
Resumo:
In this thesis a modified Canon IR optometer was used to record static and continuous responses of accommodation during sustained visual tasks. The instrument was assessed with regard to the ocular exit pupil used, its frequency response and noise levels. Experimental work concerned essentially the temporal characteristics and neurological basis of the accommodative mechanism. In the absence of visual stimuli, the accommodative system assumes a resting or tonic accommodative (TA) position, which may be modified by periods of sustained fixation. The rate of regression from a near task to TA in darkness has exhibited differences between regression rates for enunetropes (EMMs) compared with late-onset myopes (WMs). The rate of accommodative regression from a task set at 3D above TA was examined for a group of 10 EMMs and 10 LOMs for 3 conditions: saline, timolol and betaxolol. Timolol retarded the regression to TA for a sub-group of EMMs. The patterns of regression for the remaining emmetropes mirrored that for the LOMs, the drugs showing no difference in rate of regression compared with the saline condition. This provides support for the conjecture that LOMs and certain EMMs appear to be deficient in a sympathetic inhibitory component to the ciliary muscle which may attenuate adaptational changes in tonus and which leave them susceptible to the development of LOM. It is well established that the steady-state accommodative response is characterised by temporal changes in lens power having 2 dominant frequency components: a low frequency component (LFC: < 0.6Hz) and a high frequency component (HFC: 1.0-2.2Hz). This thesis investigates various aspects of these microfluctuations of accommodation.The HFC of accommodative fluctuations was shown to be present in central and peripheral lens zones, although the magnitude of the rms of accommodative microfluctuations was found to be reduced in the lens periphery. These findings concur with the proposal that the lens capsule acts as a force distributor, transmitting the tension from the zonules evenly over the whole of the lens surface.An investigation into the correlation between arterial pulse and the HFC of accommodative fluctuations showed that the peak frequency of the HFC was governed by the arterial pulse frequency. It was proposed that the microflucutations comprised a combination of neurological control (LFC) and physiological variations (HFC).The effect of timolol maleate on the steady-state accommodative response for a group of 10 emmetropes showed that timolol reduced significantly the rms of accommodative microfluctuations in treated but not untreated eyes. Consequently, the effect was considered to be locally, rather than systemically induced.The influence of the sympathetic system on within-task measurements of accommodation was examined by recording the accommodative response of 3 subjects to a sinusoidally moving target at 6 temporal frequencies from 0.05Hz to 0.5Hz for 3 drug conditions: saline, timolol and betaxolol. Timolol caused a reduced gain for frequencies below 0.3 whereas betaxolol reduced accommodative gain for all frequencies. It was proposed that the results for timolol were consistent with temporal response characteristics of sympathetic innervation of the ciliary muscle whereas the betaxolol results were thought to be a manifestation of fatigue resulting from the CNS depressant effect of the drug.
Resumo:
Responsive core-shell latex particles are used to prepare colloidosome microcapsules using thermal annealing and internal cross-linking of the shell, allowing production of the microcapsules at high concentrations. The core-shell particles are composed of a polystyrene core and a shell of poly[2-(dimethylamino)ethyl methacrylate]-b-poly[methyl methacrylate] (PDMA-b-PMMA) chains adsorbed onto the core surface, providing steric stabilisation. The PDMA component of adsorbed polymer shell confers the latex particle thermal and pH responsive characteristics, it also provides glass transitions at lower temperatures than that of the core and reactive amine groups. These features facilitate the formation of stable Pickering emulsion droplets and the immobilisation of the latex particle monolayer on these droplets to form colloidosome microcapsules. The immobilisation is achieved through thermal annealing or cross-linking of the shell at mild conditions feasible for large scale economic production. We demonstrate here that it is possible to anneal the particle monolayer on the emulsion drop surface at 75-86 ºC by using the lower glass transition temperature of the shell compared to that of the polystyrene cores (~108 ºC). The colloidosome microcapsules formed have a rigid membrane basically composed of a monolayer of particles. Chemical cross-linking has also been successfully achieved by confining a cross-linker within the disperse droplet. This approach leads to the formation of single-layered stimulus-responsive soft colloidosome membranes and provides the advantage of working at very high emulsion concentrations since inter-droplet cross-linking is thus avoided. The porosity and mechanical strength of microcapsules are also discussed here in terms of the observed structure of the latex particle monolayers forming the capsule membrane.
Resumo:
Aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) has been used to describe the histological lesion associated with metal-on-metal (M-M) bearings. We tested the hypothesis that the lymphoid aggregates, associated with ALVAL lesions resemble tertiary lymphoid organs (TLOs). Histopathological changes were examined in the periprosthetic tissue of 62 M-M hip replacements requiring revision surgery, with particular emphasis on the characteristics and pattern of the lymphocytic infiltrate. Immunofluorescence and immunohistochemistry were used to study the classical features of TLOs in cases where large organized lymphoid follicles were present. Synchrotron X-ray fluorescence (XRF) measurements were undertaken to detect localisation of implant derived ions/particles within the samples. Based on type of lymphocytic infiltrates, three different categories were recognised; diffuse aggregates (51%), T cell aggregates (20%), and organised lymphoid aggregates (29%). Further investigation of tissues with organised lymphoid aggregates showed that these tissues recapitulate many of the features of TLOs with T cells and B cells organised into discrete areas, the presence of follicular dendritic cells, acquisition of high endothelial venule like phenotype by blood vessels, expression of lymphoid chemokines and the presence of plasma cells. Co-localisation of implant-derived metals with lymphoid aggregates was observed. These findings suggest that in addition to the well described general foreign body reaction mediated by macrophages and a T cell mediated type IV hypersensitivity response, an under-recognized immunological reaction to metal wear debris involving B cells and the formation of tertiary lymphoid organs occurs in a distinct subset of patients with M-M implants. © 2013 Mittal et al.
Resumo:
The human accommodation system has been extensively examined for over a century, with a particular focus on trying to understand the mechanisms that lead to the loss of accommodative ability with age (Presbyopia). The accommodative process, along with the potential causes of presbyopia, are disputed; hindering efforts to develop methods of restoring accommodation in the presbyopic eye. One method that can be used to provide insight into this complex area is Finite Element Analysis (FEA). The effectiveness of FEA in modelling the accommodative process has been illustrated by a number of accommodative FEA models developed to date. However, there have been limitations to these previous models; principally due to the variation in data on the geometry of the accommodative components, combined with sparse measurements of their material properties. Despite advances in available data, continued oversimplification has occurred in the modelling of the crystalline lens structure and the zonular fibres that surround the lens. A new accommodation model was proposed by the author that aims to eliminate these limitations. A novel representation of the zonular structure was developed, combined with updated lens and capsule modelling methods. The model has been designed to be adaptable so that a range of different age accommodation systems can be modelled, allowing the age related changes that occur to be simulated. The new modelling methods were validated by comparing the changes induced within the model to available in vivo data, leading to the definition of three different age models. These were used in an extended sensitivity study on age related changes, where individual parameters were altered to investigate their effect on the accommodative process. The material properties were found to have the largest impact on the decline in accommodative ability, in particular compared to changes in ciliary body movement or zonular structure. Novel data on the importance of the capsule stiffness and thickness was also established. The new model detailed within this thesis provides further insight into the accommodation mechanism, as well as a foundation for future, more detailed investigations into accommodation, presbyopia and accommodative restoration techniques.
Resumo:
Flow cytometry and confocal microscopy were used to quantify and visualize FITC-lectin binding to cell-surface carbohydrate ligands of log and stationary phase acapsular and capsular Cryptococcus neoformans strains. Cell populations demonstrated marked avidity for terminal a-linked mannose and glucose specific FITC-Con A, mannose specific FITC-GNL, as well as N-acetylglucosamine specific FITC-WGA. Exposure to other FITC-lectins specific for mannose, fucose and N-acetylgalactosamine resulted in little cell-surface fluorescence. The nature of cell-surface carbohydrates was investigated further by measurement of the fluorescence from surfaces of log and stationary phase cell populations after exposing them to increasing concentrations of FITC-Con A and FITC-WGA. Cell fluorescence increased significantly with small increases in FITC-Con A and FITC-WGA concentrations attaining reproducible maxima. Measurements of this nature supported calculation of the lectin binding determinants EC 50, Hn, Fmax and relative Bmax values. EC50 values indicated that the yeast-cell surfaces had greatest affinity for FITC-WGA, however, relative Bmax values indicated that greater numbers of Con A binding sites were present on these same cell surfaces. Hn values suggested a co-operative lectin-carbohydrate ligand interaction. Imaging of FITC-Con A and FITC-WGA cell-surface fluorescence by confocal microscopy demonstrated marked localization of both lectins to cell surfaces associated with cell division and maturation, indicative of dynamic carbohydrate ligand exposure and masking. Some fluorescence was associated with entrapment of FITC-Con A by capsular components, but FITC-Con A and FITC-WGA readily penetrated the capsule matrix to bind to the same cell surfaces labelled in acapsular cells.
Resumo:
This paper briefly reviews CMOS image sensor technology and its utilization in security and medical applications. The role and future trends of image sensors in each of the applications are discussed. To provide the reader deeper understanding of the technology aspects the paper concentrates on the selected applications such as surveillance, biometrics, capsule endoscopy and artificial retina. The reasons for concentrating on these applications are due to their importance in our daily life and because they present leading-edge applications for imaging systems research and development. In addition, review of image sensors implementation in these applications allows the reader to investigate image sensor technology from the technical and from other views as well.
Resumo:
Swallowable capsule endoscopy is used for non-invasive diagnosis of some gastrointestinal (GI) organs. However, control over the position of the capsule is a major unresolved issue. This study presents a design for steering the capsule based on magnetic levitation. The levitation is stabilized with the aid of a computer-aided feedback control system and diamagnetism. Peristaltic and gravitational forces to be overcome were calculated. A levitation setup was built to analyze the feasibility of using Hall Effect sensors to locate the in- vivo capsule. CAD software Maxwell 3D (Ansoft, Pittsburgh, PA) was used to determine the dimensions of the resistive electromagnets required for levitation and the feasibility of building them was examined. Comparison based on design complexity was made between positioning the patient supinely and upright.