921 resultados para Peptide Fragments -- chemistry -- immunology -- metabolism
Resumo:
A problem facing the use of subunit peptide and protein vaccines is their inability to stimulate protective immune responses. Many different approaches have been utilized to overcome this inefficient immune activation. The approach we have taken is to modify the vaccine antigen so that it now has adjuvant properties. To do this, multiple copies of minimal CD8 T cell epitopes were attached to a poly lysine lipid core. These constructs are known as lipid-core-peptides (LCP). The research presented here examines the adjuvant activity of LCP. Using mouse models, we were able to show that LCP were indeed able to activate antigen-presenting cells in vitro and to activate cytotoxic T-cell responses in vivo. More importantly, LCP were able to stimulate the development of a protective antitumour immune response.
Resumo:
Cyclotides are plant-derived miniproteins that have the unusual features of a head-to-tail cyclized peptide backbone and a knotted arrangement of disulfide bonds. It had been postulated that they might be an especially large family of host defense agents, but this had not yet been tested by field data on cyclotide variation in wild plant populations. In this study, we sampled Australian Hybanthus (Violaceae) to gain an insight into the level of variation within populations, within species, and between species. A wealth of cyclotide diversity was discovered: at least 246 new cyclotides are present in the 11 species sampled, and 26 novel sequences were characterized. A new approach to the discovery of cyclotide sequences was developed based on the identification of a conserved sequence within a signal sequence in cyclotide precursors. The number of cyclotides in the Violaceae is now estimated to be >9000. Cyclotide physicochemical profiles were shown to be a useful taxonomic feature that reflected species and their morphological relationships. The novel sequences provided substantial insight into the tolerance of the cystine knot framework in cyclotides to amino acid substitutions and will facilitate protein engineering applications of this framework.
Resumo:
Conotoxins (CTXs), with their exquisite specificity and potency, have recently created much excitement as drug leads. However, like most peptides, their beneficial activities may potentially be undermined by susceptibility to proteolysis in vivo. By cyclizing the alpha-CTX MII by using a range of linkers, we have engineered peptides that preserve their full activity but have greatly improved resistance to proteolytic degradation. The cyclic MII analogue containing a seven-residue linker joining the N and C termini was as active and selective as the native peptide for native and recombinant neuronal nicotinic acetylcholine receptor subtypes present in bovine chromaffin cells and expressed in Xerl oocytes, respectively. Furthermore, its resistance to proteolysis against a specific protease and in human plasma was significantly improved. More generally, to our knowledge, this report is the first on the cyclization of disulfide-rich toxins. Cyclization strategies represent an approach for stabilizing bioactive peptides while keeping their full potencies and should boost applications of peptide-based drugs in human medicine.
Resumo:
A rapid method has been developed for the quantification of the prototypic cyclotide kalata B I in water and plasma utilizing matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry. The unusual structure of the cyclotides means that they do not ionise as readily as linear peptides and as a result of their low ionisation efficiency, traditional LC/MS analyses were not able to reach the levels of detection required for the quantification of cyclotides in plasma for pharmacokinetic studies. MALDI-TOF-MS analysis showed linearity (R-2 > 0.99) in the concentration range 0.05-10 mu g/mL with a limit of detection of 0.05 mu g/mL (9 fmol) in plasma. This paper highlights the applicability of MALDI-TOF mass spectrometry for the rapid and sensitive quantification of peptides in biological samples without the need for extensive extraction procedures. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
MHC class I molecules generally present peptides of 8-10 aa long, forming an extended coil in the HLA cleft. Although longer peptides can also bind to class I molecules, they tend to bulge from the cleft and it is not known whether the TCR repertoire has sufficient plasticity to recognize these determinants during the antiviral CTL response. In this study, we show that unrelated individuals infected with EBV generate a significant CTL response directed toward an HLA-B*3501-restricted, 11-mer epitope from the BZLF1 Ag. The 11-mer determinant adopts a highly bulged conformation with seven of the peptide side chains being solvent-exposed and available for TCR interaction. Such a complex potentially creates a structural challenge for TCR corecognition of both HLA-B*3501 and the peptide Ag. Surprisingly, unrelated B*3501 donors recognizing the 11-mer use identical or closely related alpha beta TCR sequences that share particular CDR3 motifs. Within the small number of dominant CTL clonotypes observed, each has discrete fine specificity for the exposed-side chain residues of the peptide. The data show that bulged viral peptides are indeed immunogenic but suggest that the highly constrained TCR repertoire reflects a limit to TCR diversity when responding to some unusual MHC peptide ligands.
Resumo:
The present study has examined expression and circulating levels of C-type natriuretic peptide (CNP) in the euryhaline bull shark, Carcharhinus leucas. Complementary DNA and deduced amino acid sequence for CNP in C leucas were determined by RACE methods. Homology of CNP amino acid sequence in C. leucas was high both for proCNP and for mature CNP when compared with previously identified elasmobranch CNPs. Mature CNP sequence in C. leucas was identical to that in Triakis seyllia and Seyliorhinus canicula. Levels of expression of CNP mRNA were significantly decreased in the atrium but did not change in either the brain or ventricle following acclimation to a SW environment. However, circulating levels of CNP significantly increased from 86.0 +/- 7.9 fmol ml(-1) in FW to 144.9 +/- 19.5 fmol ml(-1) in SW. The results presented demonstrate that changes in environmental salinity influences both synthesis of CNP from the heart and also circulating levels in C. leucas. Potential stimulus for release and modes of action are discussed. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The recent discovery that the natriuretic peptide OvCNPb (Ornithorhynchus venom C-type natriuretic peptide B) from platypus (Ornithorynchus anatinus) venom contains a D-amino acid residue suggested that other D-amino-acid-containing peptides might be present in the venom. In the present study, we show that DLP-2 (defensin-like peptide-2), a 42-amino-acid residue polypeptide in the platypus venom, also contains a D-amino acid residue, D-methionine, at position 2, while DLP-4, which has an identical amino acid sequence, has all amino acids in the L-form. These findings were supported further by the detection of isomerase activity in the platypus gland venom extract that converts DLP-4 into DLP-2. In the light of this new information, the tertiary structure of DLP-2 was recalculated using a new structural template with D-Met(2). The structure of DLP-4 was also determined in order to evaluate the effect of a D-amino acid at position 2 on the structure and possibly to explain the large retention time difference observed for the two molecules in reverse-phase HPLC. The solution structures of the DLP-2 and DLP-4 are very similar to each other and to the earlier reported structure of DLP-2, which assumed that all amino acids were in the L-form. Our results suggest that the incorporation of the D-amino acid at position 2 has minimal effect on the overall fold in solution.
Resumo:
Tamoxifen is a known hepatocarcinogen in rats and is associated with an increased incidence of endometrial. cancer in patients. One mechanism for these actions is via bioactivation, where reactive metabolites are generated that are capable of binding to DNA or protein. Several metabolites of tamoxifen have been identified that appear to predispose to adduct formation. These include alpha-hydroxytamoxifen, alpha,4-dihydroxytamoxifen, and alpha-hydroxy-N-desmethyltamoxifen. Previous studies have shown that cytochrome P450 (P450) enzymes play an important role in the biotransformation of tamoxifen. The aim of our work was to determine which P450 enzymes were capable of producing a-hydroxylated metabolites from tamoxifen. When tamoxifen (18 or 250,mu M) was used as the substrate, P450 3A4, and to a lesser extent, P450 2D6, P450 2B6, P450 3A5, P450 2C9, and P450 2C19 all produced a metabolite with the same HPLC retention time as alpha-hydroxytamoxifen at either substrate concentration tested. This peak was well-separated from 4-hydroxy-N-desmethyltamoxifen, which eluted substantially later under the chromatographic conditions used. No alpha,4-dihydroxytamoxifen was detected in incubations with any of the forms with tamoxifen as substrate. However, when 4-hydroxytamoxifen (100,mu M) was used as the substrate, P450 2B6, P450 3A4, P450 3A5, P450 1B1, P450 1A1, and P450 2D6 all produced detectable concentrations of a,4-dihydroxytamoxifen. These studies demonstrate that multiple human P450s, including forms found in the endometrium, may generate reactive metabolites in women undergoing tamoxifen therapy, which could subsequently play a role in the development of endometrial cancer.
Resumo:
A novel member of the human relaxin subclass of the insulin superfamily was recently discovered during a genomics database search and named relaxin-3. Like human relaxin-1 and relaxin-2, relaxin-3 is predicted to consist of a two-chain structure and three disulfide bonds in a disposition identical to that of insulin. To undertake detailed biophysical and biological characterization of the peptide, its chemical synthesis was undertaken. In contrast to human relaxin-1 and relaxin-2, however, relaxin-3 could not be successfully prepared by simple combination of the individual chains, thus necessitating recourse to the use of a regioselective disulfide bond formation strategy. Solid phase synthesis of the separate, selectively S-protected A and B chains followed by their purification and the subsequent stepwise formation of each of the three disulfides led to the successful acquisition of human relaxin-3. Comprehensive chemical characterization confirmed both the correct chain orientation and the integrity of the synthetic product. Relaxin-3 was found to bind to and activate native relaxin receptors in vitro and stimulate water drinking through central relaxin receptors in vivo. Recent studies have demonstrated that relaxin-3 will bind to and activate human LGR7, but not LGR8, in vitro. Secondary structural analysis showed it to adopt a less ordered confirmation than either relaxin-1 or relaxin-2, reflecting the presence in the former of a greater percentage of nonhelical forming amino acids. NMR spectroscopy and simulated annealing calculations were used to determine the three-dimensional structure of relaxin-3 and to identify key structural differences between the human relaxins.
Resumo:
A systematic study using solid phase peptide synthesis has been undertaken to examine the role of the disulfide bonds in the structure and function of mEGF. A combination of one, two and three native disulfide pair analogues of an active truncated (4-48) form of mEGF have been synthesised by replacing specific cysteine residues with isosteric alpha-amino-n-butyric acid (Abu). Oxidation of the peptides was performed using either conventional aerobic oxidation at basic pH, in DMSO under acidic conditions or via selective disulfide formation using orthogonal protection of the cysteine pairs. The contribution of individual, or pairs of, disulfide bonds to EGF structure was evaluated by CD and H-1-NMR spectroscopy. The mitogenic activity of each analogue was determined using Balb/c 3T3 mouse fibroblasts. As we have reported previously (Barnham et al. 1998), the disulfide bond between residues 6 and 20 can be removed with significant retention of biological activity (EC50 20-50 nM). The overall structure of this analogue was similar to that of native mEGF, indicating that the loss of the 6-20 disulfide bridge did not affect the global fold of the molecule. We now show that removal of any other disulfide bond, either singly or in pairs, results in a major disruption of the tertiary structure, and a large loss of activity (EC50>900 nM). Remarkably, the linear analogue appears to have greater activity (EC50 580 nM) than most one and two disulfide bond analogues although it does not have a definable tertiary structure.
Resumo:
Proteins secreted by and anchored on the surfaces of parasites are in intimate contact with host tissues. The transcriptome of infective cercariae of the blood fluke, Schistosoma mansoni, was screened using signal sequence trap to isolate cDNAs encoding predicted proteins with an N-terminal signal peptide. Twenty cDNA fragments were identified, most of which contained predicted signal peptides or transmembrane regions, including a novel putative seven-transmembrane receptor and a membrane-associated mitogen-activated protein kinase. The developmental expression pattern within different life-cycle stages ranged from ubiquitous to a transcript that was highly upregulated in the cercaria. A bioinformatics-based comparison of 100 signal peptides from each of schistosomes, humans, a parasitic nematode and Escherichia coli showed that differences in the sequence composition of signal peptides, notably the residues flanking the predicted cleavage site, might account for the negative bias exhibited in the processing of schistosome signal peptides in mammalian cells. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Over one hundred peptide-activated G protein-coupled receptors recognize ligands with turn structure
Resumo:
The conjugation of a lipoamino acid to the N-terminus of Gonadotropin releasing hormone (GnRH) produces a lipophilic peptide from which the parent GnRH peptide is released into solution on treatment with plasma and kidney enzyme preparation. Our findings show that one stereoisomer of the Laa is cleaved very rapidly, providing a bolus dose of the peptide while the opposite stereoisomer is cleaved much more slowly, providing prolonged elevation of peptide concentration. The Laa-Glu linkage appears to act as a two phase prodrug system. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Cyclic pentapepticles are not known to exist in a-helical conformations. CD and NMR spectra show that specific 20-membered cyclic pentapepticles, Ac-(cyclo-1,5) [KxxxD]-NH2 and Ac-(cyclo-2,6)R[KxxxD]-NH2, are highly a-helical structures in water and independent of concentration, TFE, denaturants, and proteases. These are the smallest a-helical peptides in water.