944 resultados para Passive vibration damping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recordings from the PerenniAL Acoustic Observatory in the Antarctic ocean (PALAOA) show seasonal acoustic presence of 4 Antarctic ice-breeding seal species (Ross seal, Ommatophoca rossii, Weddell seal, Leptonychotes weddellii, crabeater, Lobodon carcinophaga, and leopard seal, Hydrurga leptonyx). Apart from Weddell seals, inhabiting the fast-ice in Atka Bay, the other three (pack-ice) species however have to date never (Ross and leopard seal) or only very rarely (crabeater seals) been sighted in the Atka Bay region. The aim of the PASATA project is twofold: the large passive acoustic hydrophone array (hereafter referred to as large array) aims to localize calling pack-ice pinniped species to obtain information on their location and hence the ice habitat they occupy. This large array consists of four autonomous passive acoustic recorders with a hydrophone sensor deployed through a drilled hole in the sea ice. The PASATA recordings are time-stamped and can therefore be coupled to the PALAOA recordings so that the hydrophone array spans the bay almost entirely from east to west. The second, smaller hydrophone array (hereafter referred to as small array), also consists of four autonomous passive acoustic recorders with hydrophone sensors deployed through drilled holes in the sea ice. The smaller array was deployed within a Weddell seal breeding colony, located further south in the bay, just off the ice shelf. Male Weddell seals are thought to defend underwater territories around or near tide cracks and breathing holes used by females. Vocal activity increases strongly during the breeding season and vocalizations are thought to be used underwater by males for the purpose of territorial defense and advertisement. With the smaller hydrophone array we aim to investigate underwater behaviour of vocalizing male and female Weddell seals to provide further information on underwater movement patterns in relation to the location of tide cracks and breathing holes. As a pilot project, one on-ice and three underwater camera systems have been deployed near breathing holes to obtain additional visual information on Weddell seal behavioural activity. Upon each visit in the breeding colony, a census of colony composition on the ice (number of animals, sex, presence of dependent pups, presence and severity of injuries-indicative of competition intensity) as well as GPS readings of breathing holes and positions of hauled out Weddell seals are taken.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote sensing instruments are key players to map land surface temperature (LST) at large temporal and spatial scales. In this paper, we present how we combine passive microwave and thermal infrared data to estimate LST during summer snow-free periods over northern high latitudes. The methodology is based on the SSM/I-SSMIS 37 GHz measurements at both vertical and horizontal polarizations on a 25 km × 25 km grid size. LST is retrieved from brightness temperatures introducing an empirical linear relationship between emissivities at both polarizations as described in Royer and Poirier (2010). This relationship is calibrated at pixel scale, using cloud-free independent LST data from MODIS instruments. The SSM/I-SSMIS and MODIS data are synchronized by fitting a diurnal cycle model built on skin temperature reanalysis provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The resulting temperature dataset is provided at 25 km scale and at an hourly time step during the ten-year analysis period (2000-2011). This new product was locally evaluated at five experimental sites of the EU-PAGE21 project against air temperature measurements and meteorological model reanalysis, and compared to the MODIS LST product at both local and circumpolar scale. The results giving a mean RMSE of the order of 2.2 K demonstrate the usefulness of the microwave product, which is unaffected by clouds as opposed to thermal infrared products and offers a better resolution compared to model reanalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last years, there has been much concern about learning management systems' (LMS) effectiveness when compared to traditional learning and about how to assess students' participation during the course. The tracking and monitoring capabilities of most recent LMS have made it possible to analyse every interaction in the system. The issues addressed on this study are: a) Is LMS student's interaction an indicator of academic performance?; b) Are different results in performance expected between distance and in-class LMS-supported education?; c) How can LMS interactions from logs be categorised?; d) May this categorisation detect 'learning witnesses'? To answer these questions, a set of interaction types from Moodle LMS activity record logs has been analysed during two years in online and in-class Master's degrees at the UPM. The results show partial or no evidence of influence between interaction indicators and academic performance, although the proposed categorisation may help detect learning witnesses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The railway overhead (or catenary) is the system of cables responsible for providing electric current to the train. This system has been reported as wind-sensitive (Scanlon et al., 2000), and particularly to the occurrence of galloping phenomena. Galloping phenomena of the railway overhead consists of undamped cable oscillations triggered by aerodynamic forces acting on the contact wire. As is well known, aerodynamic loads on the contact wire depends on the incident flow mean velocity and the angle of attack. The presence of embankments or hills modifies both vertical velocities profiles and angles of attack of the flow (Paiva et al., 2009). The presence of these cross-wind related oscillations can interfere with the safe operation of the railway service (Johnson, 1996). Therefore a correct modelling of the phenomena is required to avoid these unwanted oscillations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flat or worn wheels rolling on rough or corrugated tracks can provoke airborne noise and ground-borne vibration, which can be a serious concern for nearby neighbours of urban rail transit lines. Among the various treatments used to reduce vibration and noise, resilient wheels play an important role. In conventional resilient wheels, a slightly prestressed V­shaped rubber ring is mounted between the steel wheel centre and tyre. The elastic layer enhances rolling noise and vibration suppression, as well as impact reduction on the track. In this paper the effectiveness of resilient wheels in underground lines, in comparison to monobloc ones, is assessed. The analysed resilient wheel is able to carry greater loads than standard resilient wheels used for light vehicles. It also presents a greater radial resiliency and a higher axial stiffness than conventional V­wheels. The finite element method was used in this study. A quarter car model was defined, in which the wheelset was modelled as an elastic body. Several simulations were performed in order to assess the vibrational behaviour of elastic wheels, including modal, harmonic and random vibration analysis, the latter allowing the introduction of realistic vertical track irregularities, as well as the influence of the running speed. Due to numerical problems some simplifications were needed. Parametric variations were also performed, in which the sensitivity of the whole system to variations of rubber prestress and Poisson’s ratio of the elastic material was assessed.Results are presented in the frequency domain, showing a better performance of the resilient wheels for frequencies over 200 Hz. This result reveals the ability of the analyzed design to mitigate rolling noise, but not structural vibrations, which are primarily found in the lower frequency range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic floor loads induced by crowds in gymnasium or stadium structures are commonly modelled by superposition of the individual contributions using reduction factors for the different Fourier coefficients. These Fourier coefficients and the reduction factors are calculated using full scale measurements. Generally the testing is performed on platforms or structures that can be considered rigid, such that the natural frequencies are higher than the frequencies of the spectator movement. In this paper we shall present the testing done on a structure that used to be a gymnasium as well as the procedure used to identify its dynamic properties and a first evaluation of the socalled “group effect”.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All-terrain robot locomotion is an active topic of research. Search and rescue maneuvers and exploratory missions could benefit from robots with the abilities of real animals. However, technological barriers exist to ultimately achieving the actuation system, which is able to meet the exigent requirements of these robots. This paper describes the locomotioncontrol of a leg prototype, designed and developed to make a quadruped walk dynamically while exhibiting compliant interaction with the environment. The actuation system of the leg is based on the hybrid use of series elasticity and magneto-rheological dampers, which provide variable compliance for natural-looking motion and improved interaction with the ground. The locomotioncontrol architecture has been proposed to exploit natural leg dynamics in order to improve energy efficiency. Results show that the controller achieves a significant reduction in energy consumption during the leg swing phase thanks to the exploitation of inherent leg dynamics. Added to this, experiments with the real leg prototype show that the combined use of series elasticity and magneto-rheologicaldamping at the knee provide a 20 % reduction in the energy wasted in braking the knee during its extension in the leg stance phase.