977 resultados para Part hausdo rff distance
Resumo:
Experimental studies were performed to investigate the role and influence of grain movement on macrosegregation and microstructure evolution during equiaxed solidification. Casting experiments were performed with a grain-refined Al-Cu alloy in a rectangular sand mold. For the aluminum alloy studied, the equiaxed grains are lighter than the bulk melt and thus float up. Experiments were designed to investigate floatation phenomena of equiaxed grains in the presence of thermosolutal convection. Cooling curves were recorded at key locations in both the casting and the chill. Quantitative image analysis and spatial chemical analysis were performed on the solidified casting to observe the chemical and microstructural inhomogeneity created by the melt convection and solid floatation. Several notable features that can be attributed to grain movement were observed in temperature histories, macrosegregation patterns, and microstructures. In our experiments, the floatation of grains influences the thermal conditions and the overall flow direction in the casting cavity. In some cases, the induced flow resulting from the grain movement caused a flow reversal. This in turn influences the solidification direction, microstructure evolution, and the overall macrosegregation behavior.
Resumo:
The Hanuman langur is one of the most widely distributed and morphologically variable non-human primates in South Asia. Even though it has been extensively studied, the taxonomic status of this species remains unresolved due to incongruence between various classification schemes. This incongruence, we believe, is largely due to the use of plastic morphological characters such as coat color in classification. Additionally these classification schemes were largely based on reanalysis of the same set of museum specimens. To bring greater resolution in Hanuman langur taxonomy we undertook a field survey to study variation in external morphological characters among Hanuman langurs. The primary objective of this study is to ascertain the number of morphologically recognizable units (morphotypes) of Hanuman langur in peninsular India and to compare our field observations with published classification schemes. We typed five color-independent characters for multiple adults from various populations in South India. We used the presence-absence matrix of these characters to derive the pair-wise distance between individuals and used this to construct a neighbor-joining (NJ) tree. The resulting NJ tree retrieved six distinct clusters, which we assigned to different morphotypes. These morphotypes can be identified in the field by using a combination of five diagnostic characters. We determined the approximate distributions of these morphotypes by plotting the sampling locations of each morphotype on a map using GIS software. Our field observations are largely concordant with some of the earliest classification schemes, but are incongruent with recent classification schemes. Based on these results we recommend Hill (Ceylon Journal of Science, Colombo 21:277-305, 1939) and Pocock (Primates and carnivora (in part) (pp. 97-163). London: Taylor and Francis, 1939) classification schemes for future studies on Hanuman langurs.
Resumo:
An investigation has been made of the structure of the motion above a heated plate inclined at a small angle (about 10°) to the horizontal. The turbulence is considered in terms of the similarities to and differences from the motion above an exactly horizontal surface. One effect of inclination is, of course, that there is also a mean motion. Accurate data on the mean temperature field and the intensity of the temperature fluctuations have been obtained with platinum resistance thermometers, the signals being processed electronically. More approximate information on the velocity field has been obtained with quartz fibre anemometers. These results have been supplemented qualitatively by simultaneous observations of the temperature and velocity fluctuations and also by smoke experiments. The principal features of the flow inferred from these observations are as follows. The heat transfer and the mean temperature field are not much altered by the inclination, though small, not very systematic, variations may result from the complexities of the velocity field. This supports the view that the mean temperature field is largely governed by the large-scale motions. The temperature fluctuations show a systematic variation with distance from the lower edge and resemble those above a horizontal plate when this distance is large. The largescale motions of the turbulence start close to the lower edge, but the smaller eddies do not attain full intensity until the air has moved some distance up the plate. The mean velocity receives a sizable contribution from a ‘through-flow’ between the side-walls. Superimposed on this are developments that show that the momentum transfer processes are complex and certainly not capable of representation by any simple theory such as an eddy viscosity. On the lower part of the plate there is surprisingly large acceleration, but further up the mixing action of the small eddies has a decelerating effect.
Resumo:
1. During the fermentation of water-logged soil containing added substances with different carbon-nitrogen ratios, the reaction first turns slightly acid, but soon returns to the original hydrogen-ion concentration (pH 7·6). 2. The quantities of ammonia present in the medium increase up to a point, after which there is steady decrease. 3. There is nitrification only in the case of substances with narrow C/N ratios. The production of nitrate generally commences only after about a month, when the vigour of the initial fermentation has subsided and fairly large quantities of ammonia have accumulated in the medium. 4. The extent of mineralisation of nitrogen is determined chiefly by the C/N ratio, though in the cases of substances like mahua and lantana the presence of other constituents may also influence the processes. The quantities of mineralised nitrogen present in the soil system generally tend to decrease after about two months.
Resumo:
A fluctuating-force model is developed for representing the effect of the turbulent fluid velocity fluctuations on the particle phase in a turbulent gas–solid suspension in the limit of high Stokes number, where the particle relaxation time is large compared with the correlation time for the fluid velocity fluctuations. In the model, a fluctuating force is incorporated in the equation of motion for the particles, and the force distribution is assumed to be an anisotropic Gaussian white noise. It is shown that this is equivalent to incorporating a diffusion term in the Boltzmann equation for the particle velocity distribution functions. The variance of the force distribution, or equivalently the diffusion coefficient in the Boltzmann equation, is related to the time correlation functions for the fluid velocity fluctuations. The fluctuating-force model is applied to the specific case of a Couette flow of a turbulent particle–gas suspension, for which both the fluid and particle velocity distributions were evaluated using direct numerical simulations by Goswami & Kumaran (2010). It is found that the fluctuating-force simulation is able to quantitatively predict the concentration, mean velocity profiles and the mean square velocities, both at relatively low volume fractions, where the viscous relaxation time is small compared with the time between collisions, and at higher volume fractions, where the time between collisions is small compared with the viscous relaxation time. The simulations are also able to predict the velocity distributions in the centre of the Couette, even in cases in which the velocity distribution is very different from a Gaussian distribution.
Resumo:
The effect of fluid velocity fluctuations on the dynamics of the particles in a turbulent gas–solid suspension is analysed in the low-Reynolds-number and high Stokes number limits, where the particle relaxation time is long compared with the correlation time for the fluid velocity fluctuations, and the drag force on the particles due to the fluid can be expressed by the modified Stokes law. The direct numerical simulation procedure is used for solving the Navier–Stokes equations for the fluid, the particles are modelled as hard spheres which undergo elastic collisions and a one-way coupling algorithm is used where the force exerted by the fluid on the particles is incorporated, but not the reverse force exerted by the particles on the fluid. The particle mean and root-mean-square (RMS) fluctuating velocities, as well as the probability distribution function for the particle velocity fluctuations and the distribution of acceleration of the particles in the central region of the Couette (where the velocity profile is linear and the RMS velocities are nearly constant), are examined. It is found that the distribution of particle velocities is very different from a Gaussian, especially in the spanwise and wall-normal directions. However, the distribution of the acceleration fluctuation on the particles is found to be close to a Gaussian, though the distribution is highly anisotropic and there is a correlation between the fluctuations in the flow and gradient directions. The non-Gaussian nature of the particle velocity fluctuations is found to be due to inter-particle collisions induced by the large particle velocity fluctuations in the flow direction. It is also found that the acceleration distribution on the particles is in very good agreement with the distribution that is calculated from the velocity fluctuations in the fluid, using the Stokes drag law, indicating that there is very little correlation between the fluid velocity fluctuations and the particle velocity fluctuations in the presence of one-way coupling. All of these results indicate that the effect of the turbulent fluid velocity fluctuations can be accurately represented by an anisotropic Gaussian white noise.
Resumo:
In engineering design, the end goal is the creation of an artifact, product, system, or process that fulfills some functional requirements at some desired level of performance. As such, knowledge of functionality is essential in a wide variety of tasks in engineering activities, including modeling, generation, modification, visualization, explanation, evaluation, diagnosis, and repair of these artifacts and processes. A formal representation of functionality is essential for supporting any of these activities on computers. The goal of Parts 1 and 2 of this Special Issue is to bring together the state of knowledge of representing functionality in engineering applications from both the engineering and the artificial intelligence (AI) research communities.
Resumo:
A dynamic model of the COREX melter gasifier is developed to study the transient behavior of the furnace. The effect of pulse disturbance and step disturbance on the process performance has been studied. This study shows that the effect of pulse disturbance decays asymptotically. The step change brings the system to a new steady state after a delay of about 5 hours. The dynamic behavior of the melter gasifier with respect to a shutdown/blow-on condition and the effect of tapping are also studied. The results show that the time response of the melter gasifier is much less than that of a blast furnace.
Resumo:
The COREX melter gasifier is a countercurrent reactor to produce liquid iron. Directly reduced iron (DRI), noncoking coal, and other additives are charged to the melter gasifier at their respective temperatures, and O-2 is blown through the tuyeres. Functionally, a melter gasifier is divided into three zones: a moving bed, fluidized bed, and free board. A model has been developed for the moving bed, where the tuyere region is two-dimensional (2-D) and the rest is one-dimensional (1-D). It is based on multiphase conservation of mass, momentum, and heat. The fluidized bed has been treated as 1-D. Partial equilibrium is calculated for the free board. The calculated temperature of the hot metal, the top gas, and the chemistry of the top gas agree with the reported plant data. The model has been used to study the effects of bed height, injection of impure O-2, coal chemistry, and reactivity on the process performance.
Resumo:
Part classification and coding is still considered as laborious and time-consuming exercise. Keeping in view, the crucial role, which it plays, in developing automated CAPP systems, the attempts have been made in this article to automate a few elements of this exercise using a shape analysis model. In this study, a 24-vector directional template is contemplated to represent the feature elements of the parts (candidate and prototype). Various transformation processes such as deformation, straightening, bypassing, insertion and deletion are embedded in the proposed simulated annealing (SA)-like hybrid algorithm to match the candidate part with their prototype. For a candidate part, searching its matching prototype from the information data is computationally expensive and requires large search space. However, the proposed SA-like hybrid algorithm for solving the part classification problem considerably minimizes the search space and ensures early convergence of the solution. The application of the proposed approach is illustrated by an example part. The proposed approach is applied for the classification of 100 candidate parts and their prototypes to demonstrate the effectiveness of the algorithm. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
An efficient strategy for the contruction of spiro[4.5] decanes is described and involves a bridgehead substitution of a methoxyl group by a methyl group followed by an oxidative cleavage of the tricyclo[5.2.2.0(1,5)] undecane 25 to produce the spiro[4.5] decanes 31 & 32 which are intermediates in the synthesis of acorone. A novel one-pot conversion of alpha-methoxy carboxylic acid to alpha-methyl carboxylic acid is described.
Resumo:
In this paper, an approach to enhance the Extra High Voltage (EHV) Transmission system distance protection is presented. The scheme depends on the apparent impedance seen by the distance relay during the disturbance. In a distance relay,the impedance seen at the relay location is calculated from the fundamental frequency component of the voltage and current signals. Support Vector Machines (SVMs) are a new learning-byexample are employed in discriminating zone settings (Zone-1,Zone-2 and Zone-3) using the signals to be used by the relay.Studies on 265-bus system, an equivalent of practical Indian Western grid are presented for illustrating the proposed scheme.