884 resultados para Papillomavirus Vaccines
Resumo:
Campylobacter jejuni has a general N-linked protein glycosylation system that can be functionally transferred to Escherichia coli. In this study, we engineered E. coli cells in a way that two different pathways, protein N-glycosylation and lipopolysaccharide (LPS) biosynthesis, converge at the step in which PglB, the key enzyme of the C. jejuni N-glycosylation system, transfers O polysaccharide from a lipid carrier (undecaprenyl pyrophosphate) to an acceptor protein. PglB was the only protein of the bacterial N-glycosylation machinery both necessary and sufficient for the transfer. The relaxed specificity of the PglB oligosaccharyltransferase toward the glycan structure was exploited to create novel N-glycan structures containing two distinct E. coli or Pseudomonas aeruginosa O antigens. PglB-mediated transfer of polysaccharides might be valuable for in vivo production of O polysaccharides-protein conjugates for use as antibacterial vaccines.
Resumo:
INTRODUCTION: Breaching the skin's stratum corneum barrier raises the possibility of the administration of vaccines, gene vectors, antibodies and even nanoparticles, all of which have at least their initial effect on populations of skin cells. AREAS COVERED: Intradermal vaccine delivery holds enormous potential for improved therapeutic outcomes for patients, particularly those in the developing world. Various vaccine-delivery strategies have been employed, which are discussed in this review. The importance of cutaneous immunobiology on the effect produced by microneedle-mediated intradermal vaccination is also discussed. EXPERT OPINION: Microneedle-mediated vaccines hold enormous potential for patient benefit. However, in order for microneedle vaccine strategies to fulfill their potential, the proportion of an immune response that is due to the local action of delivered vaccines on skin antigen-presenting cells, and what is due to a systemic effect from vaccines reaching the systemic circulation, must be determined. Moreover, industry will need to invest significantly in new equipment and instrumentation in order to mass-produce microneedle vaccines consistently. Finally, microneedles will need to demonstrate consistent dose delivery across patient groups and match this to reliable immune responses before they will replace tried-and-tested needle-and-syringe-based approaches.
Resumo:
Background: Fruit and vegetable (FV) intake, which is often low in older people, is associated with reduced chronic disease risk. Objective: We determined whether increased FV intake improves measures of immune function. Design: We conducted a randomized controlled trial (The Ageing and Dietary Intervention Trial) in 83 healthy volunteers aged 65-85 y with low FV intakes (=2 portions/d); 82 subjects completed the intervention. Participants were assigned to continue their normal diets or to consume =5 FV portions/d for 16 wk. At 12 wk, tetanus toxoid (0.5 mL intramuscular) and Pneumovax II vaccine (0.5 mL intramuscular; both vaccines from Sanofi Pasteur) were administered. FV intake was monitored by using diet histories, and biomarkers of nutritional status were assessed. The primary endpoint was the antibody response to vaccination. Specific antibodies binding to tetanus toxoid (total IgG) and pneumococcal capsular polysaccharide (total IgG and IgG2) were assessed at baseline and 16 wk. Participants were recruited between October 2006 and June 2008. Results: The change in FV consumption differed significantly between groups [mean change in number of portions (95% CI): in the 2-portion/d group, 0.4 portions/d (0.2, 0.7 portions/d); in the 5-portion/d group, 4.6 portions/d (4.1, 5.0 portions/d); P < 0.001)] and also in micronutrient status. Antibody binding to pneumococcal capsular polysaccharide (total IgG) increased more in the 5-portion/d group than in the 2-portion/d group [geometric mean (95% CI) of the week 16:baseline ratio: 3.1 (2.1, 4.4) and 1.7 (1.3, 2.1), respectively; P = 0.005)]. There was no significant difference in the increases in antibody binding to tetanus toxoid. Conclusion: Increased FV intake improves the Pneumovax II vaccination antibody response in older people, which links an achievable dietary goal with improved immune function. This trial was registered at clinicaltrials.gov as NCT00858728. © 2012 American Society for Nutrition.
Resumo:
Bacteroides fragilis is a constituent of the normal resident microbiota of the human intestine and is the gram-negative obligately anaerobic bacterium most frequently isolated from clinical infection. Surface polysaccharides are implicated as potential virulence determinants. We present evidence of within strain immunochemical variation of surface polysaccharides in populations that are noncapsulate by light microscopy as determined by monoclonal antibody labelling. Expression of individual epitopes can be enriched from a population of an individual strain by use of immunomagnetic beads. Also, individual colonies in which either >94% or 94% of the bacteria carry a given epitope, there is no enrichment for other epitopes recognized by different polysaccharide-specific monoclonal antibodies. This intrastrain variation has important implications for the development of potential vaccines or immunodiagnostic tests.
Resumo:
The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specifically to contiguous DC networks within the skin. Following in situ uptake, skin-resident DCs were able to deliver antigen-encapsulated poly-d,l-lactide-co-glycolide (PGLA) nanoparticles to cutaneous draining lymph nodes where they subsequently induced significant expansion of antigen-specific T cells. Moreover, we show that antigen-encapsulated nanoparticle vaccination via microneedles generated robust antigen-specific cellular immune responses in mice. This approach provided complete protection in vivo against both the development of antigen-expressing B16 melanoma tumors and a murine model of para-influenza, through the activation of antigen-specific cytotoxic CD8(+) T cells that resulted in efficient clearance of tumors and virus, respectively. In addition, we show promising findings that nanoencapsulation facilitates antigen retention into skin layers and provides antigen stability in microneedles. Therefore, the use of biodegradable polymeric nanoparticles for selective targeting of antigen to skin DC subsets through dissolvable MNs provides a promising technology for improved vaccination efficacy, compliance, and coverage.
The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition
Resumo:
Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines.
Resumo:
Rotavirus nonstructural protein 4 (NSP4) is a protein with pleiotropic properties. It functions in rotavirus morphogenesis, pathogenesis, and is the first described viral enterotoxin. Since many bacterial toxins function as potent mucosal adjuvants, we evaluated whether baculovirus-expressed recombinant simian rotavirus SA11 NSP4 possesses adjuvant activity by co-administering NSP4 with keyhole limpet hemocyanin (KLH), tetanus toxoid (TT) or ovalbumin (OVA) as model antigens in mice. Following intranasal immunization, NSP4 significantly enhanced both systemic and mucosal immune responses to model immunogens, as compared to the control group, in an antigen-specific manner. Both full-length and a cleavage product of SA11 NSP4 had adjuvant activity, localizing this activity to the C-terminus of the protein. NSP4 forms from virulent and avirulent porcine rotavirus OSU strain, and SA11 NSP4 localized within a 2/6-virus-like particle (VLP) also exhibited adjuvant effects. These studies suggest that the rotavirus enterotoxin NSP4 can function as an adjuvant to enhance immune responses for a co-administered antigen.
Resumo:
The liver fluke, Fasciola hepatica, causes fascioliasis in domestic animals (sheep, cattle), a global disease that is also an important infection of humans. As soon as the parasite invades the gut wall its interaction with various host immune cells (e.g. dendritic cells, macrophages and mast cells) is complex. The parasite secretes a myriad of molecules that direct the immune response towards a favourable non-protective Th2-mediate/regulatory environment. These immunomodulatory molecules, such as cathepsin L peptidase (FhCL1), are under development as the first generation of fluke vaccines. However, this peptidase and other molecules, such as peroxiredoxin (FhPrx) and helminth defence molecule (FhHDM-1), exhibit various immunomodulatory properties that could be harnessed to help treat immune-related conditions in humans and animals.
Resumo:
Bacillus anthracis secretes exotoxins which act through several mechanisms including those that can subvert adaptive immunity with respect both to antigen presenting cell and T cell function. The combination of Protective Antigen (PA) and Lethal Factor (LF) forming Lethal Toxin (LT), acts within host cells to down-regulate the mitogen activated protein kinase (MAPK) signaling cascade. Until recently the MAPK kinases were the only known substrate for LT; over the past few years it has become evident that LT also cleaves Nlrp1, leading to inflammasome activation and macrophage death. The predicted downstream consequences of subverting these important cellular pathways are impaired antigen presentation and adaptive immunity. In contrast to this, recent work has indicated that robust memory T cell responses to B. anthracis antigens can be identified following natural anthrax infection. We discuss how LT affects the adaptive immune response and specifically the identification of B. anthracis epitopes that are both immunogenic and protective with the potential for inclusion in protein sub-unit based vaccines.
Resumo:
The glycolytic enzyme triose phosphate isomerase from Schistosoma mansoni is a potential target for drugs and vaccines. Molecular modelling of the enzyme predicted that a Ser-Ala-Asp motif which is believed to be a helminth-specific epitope is exposed. The enzyme is dimeric (as judged by gel filtration and cross-linking), resistant to proteolysis and highly stable to thermal denaturation (melting temperature of 82.0°C). The steady-state kinetic parameters are high (Km for dihydroxyacetone phosphate is 0.51mM; Km for glyceraldehyde 3-phosphate is 1.1mM; kcat for dihydroxyacetone phosphate is 7800s(-1) and kcat for glyceraldehyde 3-phosphate is 6.9s(-1)).
Resumo:
This paper estimates the marginal willingness-to-pay for attributes of a hypothetical HIV vaccine using discrete choice modeling. We use primary data from 326 respondents from Bangkok and Chiang Mai, Thailand, in 2008–2009, selected using purposive, venue-based sampling across two strata. Participants completed a structured questionnaire and full rank discrete choice modeling task administered using computer-assisted personal interviewing. The choice experiment was used to rank eight hypothetical HIV vaccine scenarios, with each scenario comprising seven attributes (including cost) each of which had two levels. The data were analyzed in two alternative specifications: (1) best-worst; and (2) full-rank, using logit likelihood functions estimated with custom routines in Gauss matrix programming language. In the full-rank specification, all vaccine attributes are significant predictors of probability of vaccine choice. The biomedical attributes of the hypothetical HIV vaccine (efficacy, absence of VISP, absence of side effects, and duration of effect) are the most important attributes for HIV vaccine choice. On average respondents are more than twice as likely to accept a vaccine with 99% efficacy, than a vaccine with 50% efficacy. This translates to a willingness to pay US$383 more for a high efficacy vaccine compared with the low efficacy vaccine. Knowledge of the relative importance of determinants of HIV vaccine acceptability is important to ensure the success of future vaccination programs. Future acceptability studies of hypothetical HIV vaccines should use more finely grained biomedical attributes, and could also improve the external validity of results by including more levels of the cost attribute.
Resumo:
Human papillomaviruses (HPV) are double-stranded DNA viruses, which selectively infect keratinocytes in stratified epithelia. After an initial infection, many patients clear HPV. In some patients, however, HPV persist, and dysfunctional innate immune responses to HPV infection could be involved in the ineffective clearing of these viruses. In this study, the mechanisms of HPV-induced immune responses in keratinocytes were investigated. Binding of viral DNA leads to AIM2 inflammasome activation and IL-1β release, while IFI16 activation results in IFN-β release. Using immunohistochemistry, AIM2 and IFI16-two recently identified sensors for cytosolic DNA-were also detected in HPV positive skin lesions. CISH stainings further confirmed the presence of cytosolic HPV16 DNA in biopsy samples. Moreover, active IL-1β and cleaved caspase-1 were detected in HPV infected skin, suggesting inflammasome activation by viral DNA. In subsequent functional studies, HPV16 DNA triggered IL-1β and IL-18 release via the AIM2 inflammasome in normal human keratinocytes. Although HPV DNA did not induce IFN-β in keratinocytes, IFN-β secretion was observed when AIM2 was blocked. Meanwhile, blocking of IFI16 increased HPV16 DNA-induced IL-1β, but not IL-18, secretion. These findings suggest crosstalk between IFI16 and AIM2 in the immune response to HPV DNA. In sum, novel aspects concerning HPV-induced innate immune responses were identified. Eventually, understanding the mechanisms of HPV-induced inflammasome activation could lead to the development of novel strategies for the prevention and treatment of HPV infections.
Resumo:
PURPOSE: screening tool of older people's prescriptions (STOPP) and screening tool to alert to right treatment (START) criteria were first published in 2008. Due to an expanding therapeutics evidence base, updating of the criteria was required.
METHODS: we reviewed the 2008 STOPP/START criteria to add new evidence-based criteria and remove any obsolete criteria. A thorough literature review was performed to reassess the evidence base of the 2008 criteria and the proposed new criteria. Nineteen experts from 13 European countries reviewed a new draft of STOPP & START criteria including proposed new criteria. These experts were also asked to propose additional criteria they considered important to include in the revised STOPP & START criteria and to highlight any criteria from the 2008 list they considered less important or lacking an evidence base. The revised list of criteria was then validated using the Delphi consensus methodology.
RESULTS: the expert panel agreed a final list of 114 criteria after two Delphi validation rounds, i.e. 80 STOPP criteria and 34 START criteria. This represents an overall 31% increase in STOPP/START criteria compared with version 1. Several new STOPP categories were created in version 2, namely antiplatelet/anticoagulant drugs, drugs affecting, or affected by, renal function and drugs that increase anticholinergic burden; new START categories include urogenital system drugs, analgesics and vaccines.
CONCLUSION: STOPP/START version 2 criteria have been expanded and updated for the purpose of minimizing inappropriate prescribing in older people. These criteria are based on an up-to-date literature review and consensus validation among a European panel of experts.