926 resultados para PYRUVATE-DEHYDROGENASE
Resumo:
Short-chain-length-medium-chain-length polyhydroxyalkanoates were synthesized in Saccharomyces cerevisiae from intermediates of the beta-oxidation cycle by expressing the polyhydroxyalkanoate synthases from Aeromonas caviae and Ralstonia eutropha in the peroxisomes. The quantity of polymer produced was increased by using a mutant of the beta-oxidation-associated multifunctional enzyme with low dehydrogenase activity toward R-3-hydroxybutyryl coenzyme A.
Resumo:
Background: Peach fruit undergoes a rapid softening process that involves a number of metabolic changes. Storing fruit at low temperatures has been widely used to extend its postharvest life. However, this leads to undesired changes, such as mealiness and browning, which affect the quality of the fruit. In this study, a 2-D DIGE approach was designed to screen for differentially accumulated proteins in peach fruit during normal softening as well as under conditions that led to fruit chilling injury. Results:The analysis allowed us to identify 43 spots -representing about 18% of the total number analyzed- that show statistically significant changes. Thirty-nine of the proteins could be identified by mass spectrometry. Some of the proteins that changed during postharvest had been related to peach fruit ripening and cold stress in the past. However, we identified other proteins that had not been linked to these processes. A graphical display of the relationship between the differentially accumulated proteins was obtained using pairwise average-linkage cluster analysis and principal component analysis. Proteins such as endopolygalacturonase, catalase, NADP-dependent isocitrate dehydrogenase, pectin methylesterase and dehydrins were found to be very important for distinguishing between healthy and chill injured fruit. A categorization of the differentially accumulated proteins was performed using Gene Ontology annotation. The results showed that the 'response to stress', 'cellular homeostasis', 'metabolism of carbohydrates' and 'amino acid metabolism' biological processes were affected the most during the postharvest. Conclusions: Using a comparative proteomic approach with 2-D DIGE allowed us to identify proteins that showed stage-specific changes in their accumulation pattern. Several proteins that are related to response to stress, cellular homeostasis, cellular component organization and carbohydrate metabolism were detected as being differentially accumulated. Finally, a significant proportion of the proteins identified had not been associated with softening, cold storage or chilling injury-altered fruit before; thus, comparative proteomics has proven to be a valuable tool for understanding fruit softening and postharvest.
Resumo:
PURPOSE: To report a large deletion that encompasses more than 90% of PRPF31 gene and two other neighboring genes in their entirety in an adRP pedigree that appears to show only the typical clinical features of retinitis pigmentosa. METHODS: To identify PRPF31 mutation in a dominant RP family (ADRP2) previously linked to the RP11 locus, the 14 exons of PRPF31 were screened for mutations by direct sequencing. To investigate the possibility of a large deletion, microsatellite markers near PRPF31 gene were analyzed by non-denaturing PAGE. RESULTS: Initial screening of PRPF31 gene in the ADRP2 family did not reveal an obvious mutation. A large deletion was however suspected due to lack of heterozygosity for nearly all PRPF31 intragenic single nucleotide polymorphysm (SNPs). In order to estimate the size of the deletion, SNPs and microsatellite markers spanning and flanking PRPF31 were analyzed in the entire ADRP2 family. Haplotype analysis with the above markers suggested a deletion of approximately 30 kb that included the putative promoter region of a novel gene OSCAR, the entire genomic content of genes NDUFA3, TFPT and more than 90% of PRPF31 gene. Sequence analysis of the region flanking the potential deletion showed a high presence of Alu elements implicating Alu mediated recombination as the mechanism responsible for this event. CONCLUSIONS: This mutation provides evidence that haploinsufficiency rather than aberrant function of mutated proteins is the cause of disease in these adRP patients with mutations in PRPF31 gene.
Resumo:
PURPOSE: To evaluate the effect of XG-102 (formerly D-JNKI1), a TAT-coupled dextrogyre peptide that selectively inhibits the c-Jun N-terminal kinase, in the treatment of endotoxin-induced uveitis (EIU). METHODS: EIU was induced in Lewis rats by LPS injection. XG-102 was administered at the time of LPS challenge. The ocular biodistribution of XG-102 was evaluated using immunodetection at 24 hours after either 20 microg/kg IV (IV) or 0.2 microg/injection intravitreous (IVT) administrations in healthy or uveitic eyes. The effect of XG-102 on EIU was evaluated using clinical scoring, infiltration cell quantification, inducible nitric oxide synthase (iNOS) expression and immunohistochemistry, and cytokines and chemokines kinetics at 6, 24, and 48 hours using multiplex analysis on ocular media. Control EIU eyes received vehicle injection IV or IVT. The effect of XG-102 on c-Jun phosphorylation in EIU was evaluated by Western blot in eye tissues. RESULTS: After IVT injection, XG-102 was internalized in epithelial cells from iris/ciliary body and retina and in glial and microglial cells in both healthy and uveitic eyes. After IV injection, XG-102 was concentrated primarily in inflammatory cells of uveitic eyes. Using both routes of administration, XG-102 significantly inhibited clinical signs of EIU, intraocular cell infiltration, and iNOS expression together with reduced phosphorylation of c-Jun. The anti-inflammatory effect of XG-102 was mediated by iNOS, IFN-gamma, IL-2, and IL-13. CONCLUSIONS: This is the first evidence that interfering with the JNK pathway can reduce intraocular inflammation. Local administration of XG-102, a clinically evaluated peptide, may have potential for treating uveitis.
Resumo:
Tissue-specific expression studies of Glutaryl-CoA dehydrogenase (Gcdh) in adult rats revealed expression in the whole rat brain, almost exclusively in neurons, and surprisingly high expression in the juxtamedullar cortex of the kidney. The organic anion transporter 1 (OAT1) mediates basolateral uptake of glutarate derivatives from proximal tubule cells and contributes to their renal clearance. In brain, OAT1 is expressed at the choroid plexus, in neurons of cortex and hippocampus. We hypothesized that Gcdh and Oat1 are co-expressed in the same cells in kidney and brain and analyzed their mRNA expression by in situ hybridization on cryosections of adult rat brain, kidney and liver. In brain, Gcdh and Oat1 were found co-expressed in most neurons. Only the Purkinje neurons of the cerebellum were found to be Oat1 negative. In the kidney Gcdh and Oat1 are widely co-expressed with a specific high expression in proximal tubule cells. In conclusion there seems to be a functional coupling of Gcdh and Oat1 on a renal and neuronal level. Further studies are ongoing to confirm these findings in human tissues.
Resumo:
Le cerveau est l'organe avec les besoins en énergie les plus élevés du corps humain, et le glucose est un substrat énergétique cérébral essentiel. Ces dernières décennies, la compréhension de la neuroénergétique a beaucoup évolué et un rôle du lactate comme substrat énergétique important a été mis en évidence, notamment suite à l'introduction du modèle de l'ANLS (astrocyte-neuron lactate shuttle). Selon celui-ci, les astrocytes convertissent le glucose en lactate par réaction de glycolyse, puis il est transporté jusqu'aux neurones qui l'utilisent comme source d'énergie à travers le cycle de Krebs. Chez l'homme, divers travaux récents ont montré que le lactate peut servir de « carburant » cérébral chez le sujet sain, après effort intense ou chez le patient diabétique. La régulation métabolique et le rôle du lactate après lésion cérébrale aiguë sont encore peu connus. Présentation de l'article Le but de ce travail a été d'étudier le métabolisme cérébral du lactate chez les patients atteints de traumatisme crânien (TCC) sévère. Nous avons émis l'hypothèse que l'augmentation du lactate cérébral chez ces patients n'était pas associée de manière prédominante à une hypoxie ou une ischémie mais plutôt à une glycolyse aérobie, et également à une perfusion cérébrale normale. L'étude a porté sur une cohorte prospective de 24 patients avec TCC sévère admis au service de médecine intensive du CHUV (centre hospitalier universitaire vaudois), monitorés par un système combinant microdialyse cérébrale (outil permettant de mesurer divers métabolites cérébraux, tels que le lactate, le pyruvate et le glucose), mesure de la pression cérébrale en oxygène et de la pression intracrânienne. Cet outil nous a permis de déterminer si l'élévation du lactate était principalement associée à une glycolyse active ou plutôt à une hypoxie. L'utilisation du CTde perfusion a permis d'évaluer la relation entre les deux patterns d'élévation du lactate (glycolytique ou hypoxique) et la perfusion cérébrale globale. Nos résultats ont montré que l'augmentation du lactate cérébral chez les patients avec TCC sévère était associée de manière prédominante à une glycolyse aérobie plutôt qu'à une hypoxie/ischémie. D'autre part, nous avons pu confirmer que les épisodes de lactate glycolytique étaient toujours associés à une perfusion cérébrale normale ou augmentée, alors que les épisodes de lactate hypoxique étaient associés à une hypoperfusion cérébrale. Conclusions et perspectives Nos résultats, qui ont permis de mieux comprendre le métabolisme cérébral du lactate chez les patients avec TCC sévère, soutiennent le concept que le lactate est produit dans des conditions aérobes et pourrait donc être utilisé comme source d'énergie par le cerveau lésé pour subvenir à des besoins augmentas. Etant donné que la dysfonction énergétique est une des probables causes de perte neuronale après traumatisme crânien, ces résultats ouvrent des perspectives thérapeutiques nouvelles après agression cérébrale chez l'homme, visant à tester un potentiel effet neuroprotecteur via l'administration de lactate exogène.
Resumo:
PURPOSE OF REVIEW: Almost 15 years after its initial proposal, the astrocyte-neuron lactate shuttle hypothesis still occupies the center stage in research on brain energetics. Recent developments have provided further evidence for its validity and have extended its application to different areas of neuroscience. RECENT FINDINGS: Description of cell-specific metabolic characteristics have reinforced the view that a prominent conversion of glucose into lactate takes place in astrocytes, whereas neurons preferentially take up and oxidize lactate over glucose-derived pyruvate. Indeed, specific mechanisms are activated by glutamatergic activity to favor such a net lactate transfer between the two cell types. Moreover, demonstration in vivo of the existence and implication of the astrocyte-neuron lactate shuttle hypothesis for particular neurophysiological processes is beginning to appear. SUMMARY: Brain energetics has undertaken its revolution. A new concept based on metabolic compartmentalization between astrocytes and neurons is establishing itself as the leading paradigm that opens new perspectives in areas such as functional brain imaging and regulation of energy homeostasis.
Resumo:
The aim of the study was to characterize the cell damage mechanisms involved in the pathophysiology of cytotoxicity of polymyxin B in proximal tubular cells (LLC - PK1) and discuss about the nurses interventions to identify at risk patients and consider prevention or treatment of nephrotoxicity acute kidney injury. This is a quantitative experimental in vitro study, in which the cells were exposed to 375μM polymyxin B sulfate concentration. Cell viability was determined by exclusion of fluorescent dyes and morphological method with visualization of apoptotic bodies for fluorescence microscopy. Cells exposed to polymyxin B showed reduced viability, increased number of apoptotic cells and a higher concentration of the enzyme lactate dehydrogenase. The administration of polymyxin B in vitro showed the need for actions to minimize adverse effects such as nephrotoxicity.
Resumo:
BACKGROUND: The reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a widely used, highly sensitive laboratory technique to rapidly and easily detect, identify and quantify gene expression. Reliable RT-qPCR data necessitates accurate normalization with validated control genes (reference genes) whose expression is constant in all studied conditions. This stability has to be demonstrated.We performed a literature search for studies using quantitative or semi-quantitative PCR in the rat spared nerve injury (SNI) model of neuropathic pain to verify whether any reference genes had previously been validated. We then analyzed the stability over time of 7 commonly used reference genes in the nervous system - specifically in the spinal cord dorsal horn and the dorsal root ganglion (DRG). These were: Actin beta (Actb), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal proteins 18S (18S), L13a (RPL13a) and L29 (RPL29), hypoxanthine phosphoribosyltransferase 1 (HPRT1) and hydroxymethylbilane synthase (HMBS). We compared the candidate genes and established a stability ranking using the geNorm algorithm. Finally, we assessed the number of reference genes necessary for accurate normalization in this neuropathic pain model. RESULTS: We found GAPDH, HMBS, Actb, HPRT1 and 18S cited as reference genes in literature on studies using the SNI model. Only HPRT1 and 18S had been once previously demonstrated as stable in RT-qPCR arrays. All the genes tested in this study, using the geNorm algorithm, presented gene stability values (M-value) acceptable enough for them to qualify as potential reference genes in both DRG and spinal cord. Using the coefficient of variation, 18S failed the 50% cut-off with a value of 61% in the DRG. The two most stable genes in the dorsal horn were RPL29 and RPL13a; in the DRG they were HPRT1 and Actb. Using a 0.15 cut-off for pairwise variations we found that any pair of stable reference gene was sufficient for the normalization process. CONCLUSIONS: In the rat SNI model, we validated and ranked Actb, RPL29, RPL13a, HMBS, GAPDH, HPRT1 and 18S as good reference genes in the spinal cord. In the DRG, 18S did not fulfill stability criteria. The combination of any two stable reference genes was sufficient to provide an accurate normalization.
Resumo:
BACKGROUND: Uveal melanoma exhibits a high incidence of metastases; and, to date, there is no systemic therapy that clearly improves outcomes. The anticytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) antibody ipilimumab is a standard of care for metastatic melanoma; however, the clinical activity of CTLA-4 inhibition in patients with metastatic uveal melanoma is poorly defined. METHODS: To assess ipilimumab in this setting, the authors performed a multicenter, retrospective analysis of 4 hospitals in the United States and Europe. Clinical characteristics, toxicities, and radiographic disease burden, as determined by central, blinded radiology review, were evaluated. RESULTS: Thirty-nine patients with uveal melanoma were identified, including 34 patients who received 3 mg/kg ipilimumab and 5 who received 10 mg/kg ipilimumab. Immune-related response criteria and modified World Health Organization criteria were used to assess the response rate (RR) and the combined response plus stable disease (SD) rate after 12 weeks, after 23 weeks, and overall (median follow-up, 50.4 weeks [12.6 months]). At week 12, the RR was 2.6%, and the response plus SD rate was 46.%; at week 23, the RR was 2.6%, and the response plus SD rate was 28.2%. There was 1 complete response and 1 late partial response (at 100 weeks after initial SD) for an immune-related RR of 5.1%. Immune-related adverse events were observed in 28 patients (71.8%) and included 7 (17.9%) grade 3 and 4 events. Immune-related adverse events were more frequent in patients who received 10 mg/kg ipilimumab than in those who received 3 mg/kg ipilimumab. The median overall survival from the first dose of ipilimumab was 9.6 months (95% confidence interval, 6.3-13.4 months; range, 1.6-41.6 months). Performance status, lactate dehydrogenase level, and an absolute lymphocyte count ≥ 1000 cells/μL at week 7 were associated significantly with survival. CONCLUSIONS: In this multicenter, retrospective analysis of 4 hospitals in the United States and Europe of patients with uveal melanoma, durable responses to ipilimumab and manageable toxicity were observed.
Resumo:
External stresses or mutations may cause labile proteins to lose their distinct native conformations and seek alternatively stable aggregated forms. Molecular chaperones that specifically act on protein aggregates were used here as a tool to address the biochemical nature of stable homo- and hetero-aggregates from non-pathogenic proteins formed by heat-stress. Confirmed by sedimentation and activity measurements, chaperones demonstrated that a single polypeptide chain can form different species of aggregates, depending on the denaturing conditions. Indicative of a cascade reaction, sub-stoichiometric amounts of one fast-aggregating protein strongly accelerated the conversion of another soluble, slow-aggregating protein into insoluble, chaperone-resistant aggregates. Chaperones strongly inhibited seed-induced protein aggregation, suggesting that they can prevent and cure proteinaceous infectious behavior in homo- and hetero-aggregates from common and disease-associated proteins in the cell.
Resumo:
Although gravity drainage has been the standard technique for cardiopulmonary bypass (CPB), the development of min imally invasive techniques for cardiac surgery has renewed interest in using vacuum assisted venous drainage (VAVD) Dideco (Mirandola, Italy) has modified the D903 Avant oxygenator to apply a vacuum to its venous reservoir. The impact of VAVD on blood damage with this device is analyzed. Six calves (mean body weight, 71.3 +/- 4.1 kg) were con nected to CPB by jugular venous and carotid arterial cannu lation, with a flow rate of 4-4.51 L/min for 6 h. They were assigned to gravity drainage (standard D903 Avant oxygen ator, n = 3) or VAVD (modified D903 Avant oxygenator, n = 3). The animals were allowed to survive for 7 days. A standard battery of blood samples was taken before bypass, throughout bypass, and 24 h, 48 h, and 7 days after bypass. Analysis of variance was used for repeated measurements. Thrombocyte and white blood cell counts, corrected by hematocrit and normalized by prebypass values, were not significantly different between groups throughout all study periods. The same holds true for hemolytic parameters (lactate dehydrogenase [LDH] and plasma hemoglobin). Both peaked at 24 hr in the standard and VAVD groups: LDH, 2,845 +/- 974 IU/L vs. 2,537 +/- 476 IU/L (p = 0.65), respectively; and plasma hemoglobin, 115 +/- 31 mg/L vs. 89 +/- 455 mg/L (p = 0.45), respectively. In this experimental setup with prolonged perfusion time, VAVD does not increase trauma to blood cells in comparison with standard gravity drainage.
Resumo:
Recombinant strains of the oleaginous yeast Yarrowia lipolytica expressing the PHA synthase gene (PhaC) from Pseudomonas aeruginosa in the peroxisome were found able to produce polyhydroxyalkanoates (PHA). PHA production yield, but not the monomer composition, was dependent on POX genotype (POX genes encoding acyl-CoA oxidases) (Haddouche et al. FEMS Yeast Res 10:917-927, 2010). In this study of variants of the Y. lipolytica β-oxidation multifunctional enzyme, with deletions or inactivations of the R-3-hydroxyacyl-CoA dehydrogenase domain, we were able to produce hetero-polymers (functional MFE enzyme) or homo-polymers (with no 3-hydroxyacyl-CoA dehydrogenase activity) of PHA consisting principally of 3-hydroxyacid monomers (>80%) of the same length as the external fatty acid used for growth. The redirection of fatty acid flux towards β-oxidation, by deletion of the neutral lipid synthesis pathway (mutant strain Q4 devoid of the acyltransferases encoded by the LRO1, DGA1, DGA2 and ARE1 genes), in combination with variant expressing only the enoyl-CoA hydratase 2 domain, led to a significant increase in PHA levels, to 7.3% of cell dry weight. Finally, the presence of shorter monomers (up to 20% of the monomers) in a mutant strain lacking the peroxisomal 3-hydroxyacyl-CoA dehydrogenase domain provided evidence for the occurrence of partial mitochondrial β-oxidation in Y. lipolytica.
Resumo:
Cardiac morphogenesis and function are known to depend on both aerobic and anaerobic energy-producing pathways. However, the relative contribution of mitochondrial oxidation and glycogenolysis, as well as the determining factors of oxygen demand in the distinct chambers of the embryonic heart, remains to be investigated. Spontaneously beating hearts isolated from stage 11, 20, and 24HH chick embryos were maintained in vitro under controlled metabolic conditions. O(2) uptake and glycogenolytic rate were determined in atrium, ventricle, and conotruncus in the absence or presence of glucose. Oxidative capacity ranged from 0.2 to 0.5 nmol O(2)/(h.microg protein), did not depend on exogenous glucose, and was the highest in atria at stage 20HH. However, the highest reserves of oxidative capacity, assessed by mitochondrial uncoupling, were found at the youngest stage and in conotruncus, representing 75 to 130% of the control values. At stage 24HH, glycogenolysis in glucose-free medium was 0.22, 0.17, and 0.04 nmol glucose U(h.microg protein) in atrium, ventricle, and conotruncus, respectively. Mechanical loading of the ventricle increased its oxidative capacity by 62% without altering glycogenolysis or lactate production. Blockade of glycolysis by iodoacetate suppressed lactate production but modified neither O(2) nor glycogen consumption in substrate-free medium. These findings indicate that atrium is the cardiac chamber that best utilizes its oxidative and glycogenolytic capacities and that ventricular wall stretch represents an early and major determinant of the O(2) uptake. Moreover, the fact that O(2) and glycogen consumptions were not affected by inhibition of glyceraldehyde-3-phosphate dehydrogenase provides indirect evidence for an active glycerol-phosphate shuttle in the embryonic cardiomyocytes.
Resumo:
We have previously shown that the eye is a mineralocorticoid-sensitive organ and we now question the role of mineralocorticoid receptor (MR) in ocular inflammation. The endotoxin-induced uveitis (EIU), a rat model of human intraocular inflammation, was induced by systemic administration of lipopolysaccharide (LPS). Evaluations were made 6 and 24 hours after intraocular injection of aldosterone (simultaneous to LPS injection). Three hours after onset of EIU, the MR and the glucocorticoid metabolizing enzyme 11-beta hydroxysteroid dehydrogenase type 2 (11β-HSD2) expression were down-regulated in iris/ciliary body and the corticosterone concentration was increased in aqueous humor, altering the normal MR/glucocorticoid receptor (GR) balance. At 24 hours, the GR expression was also decreased. In EIU, aldosterone reduced the intensity of clinical inflammation in a dose-dependent manner. The clinical benefit of aldosterone was abrogated in the presence of the MR antagonist (RU26752) and only partially with the GR antagonist (RU38486). Aldosterone reduced the release of inflammatory mediators (6 and 24 hours: TNF-α, IFN-γ, MIP-1α) in aqueous humor and the number of activated microglia/macrophages. Aldosterone partly prevented the uveitis-induced MR down-regulation. These results suggest that MR expression and activation in iris/ciliary body could protect the ocular structures against damages induced by EIU.