890 resultados para PUB CLOSING TIMES
Resumo:
Harry H. Johnston
Resumo:
by Louis Ginzberg ; translated from the German manuscript by Henrietta Szold
Resumo:
by Louis Ginzberg ; translated from the German manuscript by Henrietta Szold
Resumo:
by Louis Ginzberg ; translated from the German manuscript by Paul Radin
Resumo:
by Louis Ginzberg
Resumo:
Emergency Departments (EDs) and Emergency Rooms (ERs) are designed to manage trauma, respond to disasters, and serve as the initial care for those with serious illnesses. However, because of many factors, the ED has become the doorway to the hospital and a “catch-all net” for patients including those with non-urgent needs. This increase in the population in the ED has lead to an increase in wait times for patients. It has been well documented that there has been a constant and consistent rise in the number of patients that frequent the ED (National Center for Health Statistics, 2002); the wait time for patients in the ED has increased (Pitts, Niska, Xu, & Burt, 2008); and the cost of the treatment in the ER has risen (Everett Clinic, 2008). Because the ED was designed to treat patients who need quick diagnoses and may be in potential life-threatening circumstances, management of time can be the ultimate enemy. If a system was implemented to decrease wait times in the ED, decrease the use of ED resources, and decrease costs endured by patients seeking care, better outcomes for patients and patient satisfaction could be achieved. The goal of this research was to explore potential changes and/or alternatives to relieve the burden endured by the ED. In order to explore these options, data was collected by conducting one-on-one interviews with seven physicians closely tied to a Level 1 ED (Emergency Room physicians, Trauma Surgeons and Primary Care physicians). A qualitative analysis was performed on the responses of one-on-one interviews with the aforementioned physicians. The interviews were standardized, open-ended questions that probe what makes an effective ED, possible solutions to improving patient care in the ED, potential remedies for the mounting problems that plague the ED, and the feasibility of bringing Primary Care Physicians to the ED to decrease the wait times experienced by the patient. From the responses, it is clear that there needs to be more research in this area, several areas need to be addressed, and a variety of solutions could be implemented. The most viable option seems to be making the ED its own entity (similar to the clinic or hospital) that includes urgent clinics as a part of the system, in which triage and better staffing would be the most integral part of its success.^
Resumo:
During the healthcare reform debate in the United States in 2009/2010, many health policy experts expressed a concern that expanding coverage would increase waiting times for patients to obtain care. Many complained that delays in obtaining care in turn would compromise the quality of healthcare in the United States. Using data from The Commonwealth Fund 2010 International Health Policy Survey in Eleven Countries, this study explored the relationship between wait times and quality of care, employing a wait time scale and several quality of care indicators present in the dataset. The impact of wait times on quality was assessed. Increased wait time was expected to reduce quality of care. However, this study found that wait times correlated with better health outcomes for some measures, and had no association with others. Since this is a pilot study and statistical significance was not achieved for any of the correlations, further research is needed to confirm and deepen the findings. However, if future studies confirm this finding, an emphasis on reducing wait times at the expense of other health system level performance variables may be inappropriate. ^
Resumo:
The purpose of this research is to develop a new statistical method to determine the minimum set of rows (R) in a R x C contingency table of discrete data that explains the dependence of observations. The statistical power of the method will be empirically determined by computer simulation to judge its efficiency over the presently existing methods. The method will be applied to data on DNA fragment length variation at six VNTR loci in over 72 populations from five major racial groups of human (total sample size is over 15,000 individuals; each sample having at least 50 individuals). DNA fragment lengths grouped in bins will form the basis of studying inter-population DNA variation within the racial groups are significant, will provide a rigorous re-binning procedure for forensic computation of DNA profile frequencies that takes into account intra-racial DNA variation among populations. ^
Resumo:
http://lib.dr.iastate.edu/carver_narratives/1025/thumbnail.jpg
Resumo:
Sampling was conducted from March 24 to August 5 2010, in the fjord branch Kapisigdlit located in the inner part of the Godthåbsfjord system, West Greenland. The vessel "Lille Masik" was used during all cruises except on June 17-18 where sampling was done from RV Dana (National Institute for Aquatic Resources, Denmark). A total of 15 cruises (of 1-2 days duration) 7-10 days apart was carried out along a transect composed of 6 stations (St.), spanning the length of the 26 km long fjord branch. St. 1 was located at the mouth of the fjord branch and St. 6 was located at the end of the fjord branch, in the middle of a shallower inner creek . St. 1-4 was covering deeper parts of the fjord, and St. 5 was located on the slope leading up to the shallow inner creek. Mesozooplankton was sampled by vertical net tows using a Hydrobios Multinet (type Mini) equipped with a flow meter and 50 µm mesh nets or a WP-2 net 50 µm mesh size equipped with a non-filtering cod-end. Sampling was conducted at various times of day at the different stations. The nets were hauled with a speed of 0.2-0.3 m s**-1 from 100, 75 and 50 m depth to the surface at St. 2 + 4, 5 and 6, respectively. The content was immediately preserved in buffered formalin (4% final concentration). All samples were analyzed in the Plankton sorting and identification center in Szczecin (www.nmfri.gdynia.pl). Samples containing high numbers of zooplankton were split into subsamples. All copepods and other zooplankton were identified down to lowest possible taxonomic level (approx. 400 per sample), length measured and counted. Copepods were sorted into development stages (nauplii stage 1 - copepodite stage 6) using morphological features and sizes, and up to 10 individuals of each stage was length measured.
Resumo:
Sampling was conducted from March 24 to August 5 2010, in the fjord branch Kapisigdlit located in the inner part of the Godthåbsfjord system, West Greenland. The vessel "Lille Masik" was used during all cruises except on June 17-18 where sampling was done from RV Dana (National Institute for Aquatic Resources, Denmark). A total of 15 cruises (of 1-2 days duration) 7-10 days apart was carried out along a transect composed of 6 stations (St.), spanning the length of the 26 km long fjord branch. St. 1 was located at the mouth of the fjord branch and St. 6 was located at the end of the fjord branch, in the middle of a shallower inner creek . St. 1-4 was covering deeper parts of the fjord, and St. 5 was located on the slope leading up to the shallow inner creek. Mesozooplankton was sampled by vertical net tows using a Hydrobios Multinet (type Mini) equipped with a flow meter and 50 µm mesh nets or a WP-2 net 50 µm mesh size equipped with a non-filtering cod-end. Sampling was conducted at various times of day at the different stations. The nets were hauled with a speed of 0.2-0.3 m s**-1 from 100, 75 and 50 m depth to the surface at St. 2 + 4, 5 and 6, respectively. The content was immediately preserved in buffered formalin (4% final concentration). All samples were analyzed in the Plankton sorting and identification center in Szczecin (www.nmfri.gdynia.pl). Samples containing high numbers of zooplankton were split into subsamples. All copepods and other zooplankton were identified down to lowest possible taxonomic level (approx. 400 per sample), length measured and counted. Copepods were sorted into development stages (nauplii stage 1 - copepodite stage 6) using morphological features and sizes, and up to 10 individuals of each stage was length measured.