864 resultados para PHOTOVOLTAIC DEVICES
Resumo:
The most important approaches to prevent cerebral ischemia by catheter technique are patent foramen ovale (PFO) closure in patients with a history of cryptogenic stroke and left atrial appendage (LAA) occlusion in atrial fibrillation (AF) patients. Over the past years, several new devices have been developed for these procedures. Results of randomized trials comparing device therapy, antiplatelet, or anticoagulation therapy are still not available. However, several nonrandomized studies have shown promising results. This article gives a review on the current results and techniques of the most commonly used devices as well as on new developments and approaches to catheter-based stroke prevention.
Resumo:
The goal of this study was to propose a general numerical analysis methodology to evaluate the magnetic resonance imaging (MRI)-safety of active implants. Numerical models based on the finite element (FE) technique were used to estimate if the normal operation of an active device was altered during MRI imaging. An active implanted pump was chosen to illustrate the method. A set of controlled experiments were proposed and performed to validate the numerical model. The calculated induced voltages in the important electronic components of the device showed dependence with the MRI field strength. For the MRI radiofrequency fields, significant induced voltages of up to 20 V were calculated for a 0.3T field-strength MRI. For the 1.5 and 3.0T MRIs, the calculated voltages were insignificant. On the other hand, induced voltages up to 11 V were calculated in the critical electronic components for the 3.0T MRI due to the gradient fields. Values obtained in this work reflect to the worst case situation which is virtually impossible to achieve in normal scanning situations. Since the calculated voltages may be removed by appropriate protection circuits, no critical problems affecting the normal operation of the pump were identified. This study showed that the proposed methodology helps the identification of the possible incompatibilities between active implants and MR imaging, and can be used to aid the design of critical electronic systems to ensure MRI-safety
Resumo:
PURPOSE: To evaluate and compare the efficacy of proximal versus distal embolus protection devices (EPD) during carotid artery angioplasty/stenting (CAS) based on diffusion-weighted magnetic resonance imaging (DW-MRI). METHODS: Forty-four patients (31 men; mean age 68 years, range 48-85) underwent protected CAS and had DW-MRI before and after the intervention. The cohort was analyzed according to the type of EPD used: a proximal EPD was deployed in 25 (56.8%) patients (17 men; mean age 66 years, range 48-85) and a distal filter in 19 (14 men; mean age 70 years, range 58-79). Fifteen (60.0%) patients with proximal protection were symptomatic of the target lesion; in the distal protection group, 10 (52.6%) were symptomatic. RESULTS: New lesions were seen on the postinterventional DW-MRI in 28.0% (7/25) of the proximal EPD group versus 32.6% (6/19) of those with a distal filter (p = NS). The majority were clinically silent. The new lesions in the vascular territory of the stented carotid artery in the group as a whole and per patient were fewer in the proximal EPD group (p = NS). No significant differences were noted in the T(2) appearance of the new lesions or the number of new lesions observed away from the vascular territory of the stented artery. CONCLUSION: Proximal embolus protection devices show a nonsignificant trend toward fewer embolic events, which warrants large-scale studies. Furthermore, proximal protection devices can be useful to control and treat acute in-stent thrombosis.
Resumo:
PURPOSE OF REVIEW: This review will discuss the rationale and clinical utility of percutaneous left ventricular assist devices in the management of patients with cardiogenic shock. RECENT FINDINGS: Left ventricular assist devices maintain partial or total circulatory support in case of severe left ventricular failure. Currently, two percutaneous left ventricular assist devices are available for clinical use: the TandemHeart and the Impella Recover LP system. Compared with the intraaortic balloon pump, the TandemHeart has been shown to significantly reduce preload and to augment cardiac output. In a randomized comparison between the TandemHeart and intraaortic balloon pump support in patients with cardiogenic shock, the improved cardiac index afforded by the left ventricular assist device resulted in a more rapid decrease in serum lactate and improved renal function. There were, however, no significant differences with respect to 30-day mortality, and complications including limb ischemia and severe bleeding were more frequent with left ventricular assist devices than intraaortic balloon pump support. SUMMARY: The advent of percutaneous left ventricular assist devices constitutes an important advance in the management of patients with severe cardiogenic shock and may serve as bridge to recovery or heart transplantation in carefully selected patients. While improvement of hemodynamic parameters appears promising, it remains to be determined whether this benefit translates into improved clinical outcome.
Resumo:
BACKGROUND: The aim of this study was to evaluate the influence of zero-value subtraction on the performance of two laser fluorescence (LF) devices developed to detect occlusal caries. METHODS: The authors selected 119 permanent molars. Two examiners assessed three areas (cuspal, middle and cervical) of both mesial and distal portions of the buccal surface and one occlusal site using an LF device and an LF pen. For each tooth, the authors subtracted the value measured in the cuspal, middle and cervical areas in the buccal surface from the value measured in the respective occlusal site. RESULTS: The authors observed differences among the readings for both devices in the cuspal, middle and cervical areas in the buccal surface as well as differences for both devices with and without the zero-value subtraction in the occlusal surface. When the authors did not perform the zero-value subtraction, they found statistically significant differences for sensitivity and accuracy for the LF device. When this was done with the LF pen, specificity increased and sensitivity decreased significantly. CONCLUSIONS: For the LF device, the zero-value subtraction decreased the sensitivity. For this reason, the authors concluded that clinicians can obtain measures with the LF device effectively without using zero-value subtraction. For the LF pen, however, the absence of the zero-value subtraction changed both the sensitivity and specificity, and so the authors concluded that clinicians should not eliminate this step from the procedure. CLINICAL IMPLICATIONS: When using the LF device, clinicians might not need to perform the zero-value subtraction; however, for the LF pen, clinicians should do so.
Resumo:
This randomized trial compared procedural complications and 30-day clinical outcomes of 3 patent foramen ovale (PFO) closure devices (Amplatzer, Helex, and CardioSEAL-STARflex). It examined 660 patients (361 men, 299 women, mean age 49.3+/-1.9 years), with 220 patients per group. All patients had a history of paradoxical embolism. All PFO closures were successful technically. Exchange of devices for others was most frequently required for the Helex occluder (7 of 220) and 2 of 220 in either of the other groups. Three device embolizations in the Helex group were retrieved and replaced successfully. One patient with a Helex occluder developed a transient ischemic attack and recovered without treatment. A hemopericardium in that group was punctured without affecting the device. One tamponade in the Amplatzer group required surgical device explantation. In 8 of 660 patients in the CardioSEAL-STARflex group, thrombi resolved after anticoagulation. Sixteen patients (11 in the CardioSEAL-STARflex group, 3 in the Amplatzer group, and 2 in the Helex group) had episodes of atrial fibrillation. PFOs were closed completely in 143 of 220 patients (65%) in the Amplatzer group, 116 of 220 patients (52.7%) in the Helex group, and 137 of 220 patients (62.3%) in the CardioSEAL-STARflex group at 30 days with significant differences between the Helex and Amplatzer occluders (p=0.0005) and the Helex and CardioSEAL-STARflex occluders (p=0.0003). PFO closure can be performed safely with each device. In conclusion, the Helex occluder embolized more frequently. Device thrombus formation and paroxysmal atrial fibrillation were more common with the CardioSEAL-STARflex occluder.
Resumo:
Cardiogenic shock complicates up to 7% of ST-segment elevation myocardial infarctions and 2.5% of non-ST-segment elevation myocardial infarctions, with an associated mortality of 50% to 70%. Primary cardiac pump failure is followed by secondary vital organ hypoperfusion and subsequent activation of various cascade pathways, resulting in a downward spiral leading to multiple organ failure and, ultimately, death. Immediate restoration of cardiac output by means of percutaneous ventricular assist devices restores hemodynamic -stability and is an important advance in the management of patients with severe left ventricular dysfunction and cardiogenic shock. This article reviews available evidence supporting the use of percutaneous ventricular assist devices in patients suffering from cardiogenic shock.
Resumo:
A Hall thruster, an E × B device used for in-space propulsion, utilizes an axial electric field to electrostatically accelerate plasma propellant from the spacecraft. The axial electric field is created by positively biasing the anode so that the positivelycharged ions may be accelerated (repelled) from the thruster, which produces thrust. However, plasma electrons are much smaller than ions and may be accelerated much more quickly toward the anode; if electrons were not impeded, a "short circuit" due to the electron flow would eliminate the thrust mechanism. Therefore, a magnetic field serves to "magnetize" plasma electrons internal to the thruster and confines them in gyro-orbits within the discharge channel. Without outside factors electrons would be confined indefinitely; however, electron-neutral collisions provide a mechanism to free electrons from their orbits allowing electrons to cross the magnetic field toward the anode, where this process is described by classical transport theory. To make matters worse, cross-field electron transport has been observed to be 100-1000 times that predicted by classical collisional theory, providing an efficiency loss mechanism and an obstacle for modeling and simulations in Hall thrusters. The main difficulty in studying electron transport in Hall thrusters is the coupling that exists between the plasma and the fields, where the plasma creates and yet is influenced by the electric field. A device has been constructed at MTU’s Isp Lab, the Hall Electron Mobility Gage, which was designed specifically to study electron transport in E × B devices, where the coupling between the plasma and electric field was virtually eliminated. In this device the two most cited contributors to electron transport in Hall thrusters, fluctuation-induced transport, and wall effects, were absent. Removing the dielectric walls and plasma fluctuations, while maintaining the field environment in vacuum, has allowed the study of electron dynamics in Hall thruster fields where the electrons behave as test particles in prescribed fields, greatly simplifying the environment. Therefore, it was possible to observe any effects on transport not linked to the cited mechanisms, and it was possible to observe trends of the enhanced mobility with control parameters of electric and magnetic fields and neutral density– parameters that are not independently variable in a Hall thruster. The result of the investigation was the observation of electron transport that was ~ 20-100 times the classical prediction. The cross-field electron transport in the Mobility Gage was generally lower than that found in a Hall thruster so these findings do not negate the possibility of fluctuations and/or wall collisions contributing to transport in a Hall thruster. However, this research led to the observation of enhanced cross-field transport that had not been previously isolated in Hall thruster fields, which is not reliant on momentum-transfer collisions, wall collisions or fluctuations.
Resumo:
One dimensional magnetic photonic crystals (1D-MPC) are promising structures for integrated optical isolator applications. Rare earth substituted garnet thin films with proper Faraday rotation are required to fabricate planar 1D-MPCs. In this thesis, flat-top response 1D-MPC was proposed and spectral responses and Faraday rotation were modeled. Bismuth substituted iron garnet films were fabricated by RF magnetron sputtering and structures, compositions, birefringence and magnetooptical properties were studied. Double layer structures for single mode propagation were also fabricated by sputtering for the first time. Multilayer stacks with multiple defects (phase shift) composed of Ce-YIG and GGG quarter-wave plates were simulated by the transfer matrix method. The transmission and Faraday rotation characteristics were theoretically studied. It is found that flat-top response, with 100% transmission and near 45o rotation is achievable by adjusting the inter-defect spacing, for film structures as thin as 30 to 35 μm. This is better than 3-fold reduction in length compared to the best Ce-YIG films for comparable rotations, thus allows a considerable reduction in size in manufactured optical isolators. Transmission bands as wide as 7nm were predicted, which is considerable improvement over 2 defects structure. Effect of repetition number and ratio factor on transmission and Faraday rotation ripple factors for the case of 3 and 4 defects structure has been discussed. Diffraction across the structure corresponds to a longer optical path length. Thus the use of guided optics is required to minimize the insertion losses in integrated devices. This part is discussed in chapter 2 in this thesis. Bismuth substituted iron garnet thin films were prepared by RF magnetron sputtering. We investigated or measured the deposition parameters optimization, crystallinity, surface morphologies, composition, magnetic and magnetooptical properties. A very high crystalline quality garnet film with smooth surface has been heteroepitaxially grown on (111) GGG substrate for films less than 1μm. Dual layer structures with two distinct XRD peaks (within a single sputtered film) start to develop when films exceed this thickness. The development of dual layer structure was explained by compositional gradient across film thickness, rather than strain gradient proposed by other authors. Lower DC self bias or higher substrate temperature is found to help to delay the appearance of the 2nd layer. The deposited films show in-plane magnetization, which is advantageous for waveguide devices application. Propagation losses of fabricated waveguides can be decreased by annealing in an oxygen atmosphere from 25dB/cm to 10dB/cm. The Faraday rotation at λ=1.55μm were also measured for the waveguides. FR is small (10° for a 3mm long waveguide), due to the presence of linear birefringence. This part is covered in chapter 4. We also investigated the elimination of linear birefringence by thickness tuning method for our sputtered films. We examined the compressively and tensilely strained films and analyze the photoelastic response of the sputter deposited garnet films. It has been found that the net birefringence can be eliminated under planar compressive strain conditions by sputtering. Bi-layer GGG on garnet thin film yields a reduced birefringence. Temperature control during the sputter deposition of GGG cover layer is critical and strongly influences the magnetization and birefringence level in the waveguide. High temperature deposition lowers the magnetization and increases the linear birefringence in the garnet films. Double layer single mode structures fabricated by sputtering were also studied. The double layer, which shows an in-plane magnetization, has an increased RMS roughness upon upper layer deposition. The single mode characteristic was confirmed by prism coupler measurement. This part is discussed in chapter 5.
Resumo:
The perturbation of homeostatic mechanisms caused by interactions between any indwelling biomedical device and the biological medium into which it is implanted initiates a dynamic wound healing response from the host which can be rigorous and ongoing. The typical result of this response is a severe degradation in the performance and safety of the device, often to the extent of precluding their clinical use. Nitric oxide (NO) is an endogenously produced biomolecule capable of mediating many of the cellular processes leveraged against implanted devices. The in vivo performance of indwelling devices prepared with NO release coatings has recently been evaluated with very encouraging results. This work developed a platform capable of both generating programmable fluxes of NO and directly evaluating the performance of indwelling probes under different profiles of NO generation. This platform can be used to improve the efficacy of NO release materials in mitigating the host response.
Resumo:
With the economic development of China, the demand for electricity generation is rapidly increasing. To explain electricity generation, we use gross GDP, the ratio of urban population to rural population, the average per capita income of urban residents, the electricity price for industry in Beijing, and the policy shift that took place in China. Ordinary least squares (OLS) is used to develop a model for the 1979-2009 period. During the process of designing the model, econometric methods are used to test and develop the model. The final model is used to forecast total electricity generation and assess the possible role of photovoltaic generation. Due to the high demand for resources and serious environmental problems, China is pushing to develop the photovoltaic industry. The system price of PV is falling; therefore, photovoltaics may be competitive in the future.