938 resultados para PHASE-II
Resumo:
Phase I report. Site selection and estimated water costs based on current technology. Phase II report. Investigation of emerging technology, by-product recovery, and very large capacities. Period of performance: June 1965-Oct. 1966.
Resumo:
Contract no DA-44-009 Eng. 2435, Department of the Army Project no. 8-35-11-101.
Resumo:
"IDNR/EEA-96/08"--T.p. verso.
Resumo:
"In accordance with Public Act 79-1035."
Resumo:
Report by the Illinois Office of Water Resources on Phases III & IV of a flood hazard mitigation project in Rosemont, Illinois. Phase III of the Willow-Higgins Flood Mitigation Project consists of widening and improving a 340-foot reach of Willow-Higgins Creek upstream of River Road. The improvement will include the replacement of 340 lineal feet of vertical floodwall along both sides of Willow-Higgins Creek. Phase IV of the Willow-Higgins Flood Mitigation Project consists of widening and improving a reach of Willow-Higgins Creek between the downstream end of Phase II, which is 2565 feet downstream of Higgins Road, and Granville Road; and also between Willow Creek Road and a point 160 feet downstream of Willow Creek Road. The improvement will include placement of 2200 lineal feet of vertical floodwall along the north side of Willow-Higgins Creek and 160 feet of vertical floodwall along both sides of Willow-Higgins Creek downstream of Willow Creek Road.
Resumo:
The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland in summer 2012. During the second half of the experiment, dimethylsulphide (DMS) concentrations in the highest fCO2 mesocosms (1075-1333 µatm) were 34 % lower than at ambient CO2 (350 µatm). However the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 % and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 pmol L-1 increasing to 4.3 ± 0.4 pmol L-1 and 87.4 ± 14.9 pmol L-1 increasing to 134.4 ± 24.1 pmol L-1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl-? concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (± 0.9) pmol L-1 and iodoethane (C2H5I) at 0.5 (± 0.1) pmol L-1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L-1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L-1) and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L-1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both Phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high CO2, low pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 µatm fCO2. After this upwelling, DMS concentrations declined, but halocarbon concentrations remained similar or increased compared to measurements prior to the change in conditions. Based on our findings, with future acidification of Baltic Sea waters, biogenic halocarbon emissions are likely to remain at similar values to today, however emissions of biogenic sulphur could significantly decrease from this region.
Resumo:
Objectives: To determine whether ingestion of milk thistle affects the pharmacokinetics of indinavir. Methods: We conducted a three-period, randomized controlled trial with 16 healthy participants. We randomized participants to milk thistle or control. All participants received initial dosing of indinavir, and baseline indinavir levels were obtained (AUC(0-8)) (phase I). The active group were then given 450 mg milk-thistle extract capsules to be taken t.i.d. from day 2 to day 30. The control group received no plant extract. On day 29 and day 30, indinavir dosing and sampling was repeated in both groups as before (phase II). After a wash-out period of 7 days, indinavir dosing and sampling were repeated as before (phase III). Results: All participants completed the trial, but two were excluded from analysis due to protocol violation. There were no significant between-group differences. Active group mean AUC(0-8) indinavir decreased by 4.4% (90% CI, -27.5% to -26%, P=0.78) from phase I to phase II in the active group, and by 17.3% (90% CI, -37.3% to +9%, P=0.25) in phase III. Control group mean AUC(0-8) decreased by 21.5% (90% CI, -43% to +8%, P=0.2) from phase I to phase II and by 38.5% (90% CI, -55.3% to -15.3%, P=0.01) of baseline at phase III. To place our findings in context, milk thistle-oindinavir trials were identified through systematic searches of the literature. A meta-analysis of three milk thistle-indinavir trials revealed a non-significant pooled mean difference of 1% in AUC(0-8) (95% CI, -53% to 55%, P=0.97). Conclusions: Indinavir levels were not reduced significantly in the presence of milk thistle.
Resumo:
Patients with metastatic hormone-refractory prostate cancer have a progressive disease with a median survival of similar to 11 months, and currently no treatment offers a survival advantage. The standard drug treatment is a corticosteroid and chemotherapy with mitoxantrone. In a comparison of docetaxel every 3 weeks and prednisone, versus mitoxantrone and prednisone, with a follow-up of similar to 21 months, there were less deaths in the docetaxel group than in the mitoxantrone group (166 of 335 patients and 201 of 337 patients, respectively). Docetaxel also prolonged the duration of survival compared with mitoxantrone (18.9 and 16.5 months, respectively). When given with prednisone, docetaxel was also shown to reduce pain and serum prostate specific antigen levels and improve quality of life compared with mitoxantrone/prednisone. In another trial in hormone-resistant prostate cancer patients, which compared docetaxel and estramustine with mitoxantrone and prednisone during a median follow-up of 32 months, there were fewer deaths with docetaxel/estramustine than with mitoxantrone/prednisone, which were 217 of 338 and 235 of 336 patients, respectively. Median survival was also longer in the docetaxel and estramustine group than in the mitoxantrone/prednisone group (17.5 and 15.6 months, respectively). In conclusion, two combinations (docetaxel/prednisone and docetaxel/estramustine) have been shown to be superior to mitoxantrone/prednisone in hormone-refractory prostate cancer and both should be considered for use. With the present information, there is little to distinguish between these combinations.
Resumo:
Metabolism, in part, is regulated by the peroxisome proliferator-activated receptors (PPARs). The PPARs act as nutritional lipid sensors and three mammalian PPAR subtypes designated PPARalpha (NR1C1), PPARgamma (NR1C3) and PPARdelta (NR1C2) have been identified. This subgroup of nuclear hormone receptors binds DNA and controls gene expression at the nexus of pathways that regulate lipid and glucose homeostasis, energy storage and expenditure in an organ-specific manner. Recent evidence has demonstrated activation of PPARdelta in the major mass peripheral tissue (ie, adipose and skeletal muscle). It enhances glucose tolerance, insulin-stimulated glucose disposal, lipid catabolism, energy expenditure, cholesterol efflux and oxygen consumption. These effects positively influence the blood-lipid profile. Furthermore, PPARdelta activation produces a predominant type I/slow twitch/oxidative muscle fiber phenotype that leads to increased endurance, insulin sensitivity and resistance to obesity. PPARdelta has rapidly emerged as a potential target in the battle against dyslipidemia, insulin insensitivity, type II diabetes and obesity, with therapeutic efficacy in the treatment of cardiovascular disease risk factors. GW-501516 is currently undergoing phase II safety and efficacy trials in human volunteers for the treatment of dyslipidemia. The outcome of these clinical trials are eagerly awaited against a background of conflicting reports about cancer risks in genetically predisposed animal models. This review focuses on the potential pharmacological utility of selective PPARdelta agonists in the context of risk factors associated with metabolic and cardiovascular disease.
Resumo:
The complement system is an innate immune defense mechanism that protects the host from infection and injury. Complement activation results in the formation of anaphylatoxins, including the biologically active protein C5a. This anaphylatoxin is a potent chemotactic agent for immune and inflammatory cells and induces cell activation. In situations of excessive or uncontrolled complement activation, the overproduction of C5a can cause deleterious effects to the host, and this process is implicated in the pathogenesis of numerous immunoinflammatory disease states, including rheumatoid arthritis, psoriasis, inflammatory bowel disease, ischemia-reperfusion injuries and others. The presence of C5a in a wide variety of condition's has prompted many groups to examine the potential of inhibiting this complement activation product, with the aim of controlling these diseases and reducing the pathologic process. However, to date there is no clinically available specific C5a inhibitor and development of this new drug class is still in a relatively early stage, although limited phase I and phase II human clinical trials have been undertaken in the last few years with selected agents. In this review, examination of the current evidence supporting a specific role of C5a in selected disease states and an overview of potential therapeutic C5a inhibitors will enable the critical evaluation of the potential for C5a as a therapeutic target.
Resumo:
Although cytosolic glutathione S-transterase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes. GST1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GsTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals. e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence Suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestivc tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.
Resumo:
Head and neck cancer consists of a diverse group of cancers that ranges from cutaneous, lip, salivary glands, sinuses, oral cavity, pharynx and larynx. Each group dictates different management. In this review, the primary focus is on head and neck squamous cell carcinoma (HNSCC) arising from the mucosal lining of the oral cavity and pharynx, excluding nasopharyngeal cancer. Presently, HNSCC is the sixth most prevalent neoplasm in the world, with approximately 900,000 cases diagnosed worldwide. Prognosis has improved little in the past 30 years. In those who have survived, pain, disfigurement and physical disability from treatment have had an enormous psychosocial impact on their lives. Management of these patients remains a challenge, especially in developing countries where this disease is most common. Of all human cancers, HNSCC is the most distressing since the head and neck is the site of the most complex functional anatomy in the human body. Its areas of responsibility include breathing, the CNS, vision, hearing, balance, olfaction, taste, swallowing, voice, endocrine and cosmesis. Cancers that occur in this area impact on these important human functions. Consequently, in treating cancers of the head and neck, the effects of the treatment on the functional outcome of the patient need the most serious consideration. In assessing the success of HNSCC treatment, consideration of both the survival and functional deficits that the patient may suffer as a consequence of their treatment are of paramount importance. For this reason, the modern-day management of head and neck patients should be carried out in a multidisciplinary head and neck clinic.
Resumo:
A Expansão Rápida da Maxila Assistida Cirurgicamente (ERMAC) é um recurso ortodôntico-cirúrgico utilizado no tratamento das más oclusões com deficiência transversal da maxila em pacientes adultos que apresentam a consolidação da sutura palatina mediana. A proposta neste estudo foi a de avaliar as densidades ópticas da sutura palatina mediana antes da ERMAC (fase I), após o fechamento do parafuso expansor (fase II), após 3 meses do fechamento do parafuso expansor (fase III) e após 6 meses do procedimento cirúrgico. A amostra deste estudo foi constituída por 64 radiografias oclusais de 16 pacientes na faixa etária de 18 a 40 anos, sendo 6 do sexo masculino e 10 do sexo feminino que necessitavam submeter-se à Expansão Rápida da Maxila Assistida Cirurgicamente (ERMAC) e com atresia maxilar superior a 5 mm. Foram obtidas as radiografias oclusais e as imagens digitalizadas das quatro fases do estudo. Duas áreas de interesse foram demarcadas nas imagens digitalizadas, uma entre os incisivos centrais superiores e outra após o término do parafuso expansor. Procedeu-se às leituras das densidades ópticas pelo programa Image Tool for Windows por meio do Histograma. Após a análise estatística dos valores obtidos de densidade óptica das regiões analisadas pela Análise de Variâncias (ANOVA) e comparações múltiplas de Bonferroni (complemento da ANOVA), pode-se concluir que: a densidade óptica na região da sutura palatina mediana nas 4 fases estudadas, apresentou grande variação, compatível com a abertura da referida sutura e posterior neoformação óssea no período pós-operatório; foi observado valor decrescente para as densidades ópticas após o fechamento do parafuso expansor nas regiões A e B ; foi observado que após 3 meses do fechamento do parafuso expansor, as densidades ópticas aumentaram nas regiões A e B . Isso sugeriu neoformação óssea na região da sutura palatina mediana; foi observado que após 6 meses do procedimento cirúrgico, as densidades ópticas aumentaram em relação à fase anterior. Na região A , observou-se que os valores das densidades ópticas não retornaram aos valores pré-tratamento, ou seja, antes da Expansão Rápida da Maxila Assistida Cirurgicamente (ERMAC). Já os valores das densidades ópticas médias da região B retornaram aos valores iniciais, antes da ERMAC. A análise estatística revelou que após 6 meses do procedimento cirúrgico, houve diferença estatisticamente significante ao se avaliar a região A comparando as fases entre si, porém ao se avaliar a região B não houve diferença estatisticamente significante ao se comparar as fases I e IV.
Resumo:
Redox-sensitive cell signalling Thiol groups and the regulation of gene expression Redox-sensitive signal transduction pathways Protein kinases Protein phosphatases Lipids and phospholipases Antioxidant (electrophile) response element Intracellular calcium signalling Transcription factors NF-?B AP-1 p53 Cellular responses to oxidative stress Cellular responses to change in redox state Proliferation Cell death Immune cell function Reactive oxygen and nitrogen species – good or bad? Reactive oxygen species and cell death Reactive oxygen species and inflammation Are specific reactive oxygen species and antioxidants involved in modulating cellular responses? Specific effects of dietary antioxidants in cell regulation Carotenoids Vitamin E Flavonoids Inducers of phase II enzymes Disease states affected Oxidants, antioxidants and mitochondria Introduction Mitochondrial generation of reactive oxygen and nitrogen species Mitochondria and apoptosis Mitochondria and antioxidant defences Key role of mitochondrial GSH in the defence against oxidative damage Mitochondrial oxidative damage Direct oxidative damage to the mitochondrial electron transport chain Nitric oxide and damage to mitochondria Effects of nutrients on mitochondria Caloric restriction and antioxidants Lipids Antioxidants Techniques and approaches Mitochondrial techniques cDNA microarray approaches Proteomics approaches Transgenic mice as tools in antioxidant research Gene knockout and over expression Transgenic reporter mice Conclusions Future research needs