639 resultados para Orchard sprayer
Resumo:
'Abnormal vertical growth' (AVG) was recognised in Australia as a dysfunction of macadamia (Macadamia spp.) in the mid-1990s. Affected trees displayed unusually erect branching, and poor flowering and yield. Since 2002, the commercial significance of AVG, its cause, and strategies to alleviate its affects, has been studied. The cause is still unknown, and AVG remains a serious threat to orchard viability. AVG affects both commercial and urban macadamia. It occurs predominantly in the warmer-drier production regions of Queensland and New South Wales. An estimated 100,000 orchard trees are affected, equating to an annual loss of $ 10.5 M. In orchards, AVG occurs as aggregations of affected trees, affected tree number can increase by 4.5% per year, and yield reduction can exceed 30%. The more upright cultivars 'HAES 344' and '741' are highly susceptible, while the more spreading cultivars 'A4', 'A16' and 'A268' show tolerance. Incidence is higher (p<0.05) in soils of high permeability and good drainage. No soil chemical anomaly has been found. Fine root dry weight of AVG trees (0-15 cm depth) was found lower (p<0.05) than non-AVG. Next generation sequencing has led to the discovery of a new Bacillus sp. and a bipartite Geminivirus, which may have a role in the disease. Trunk cinctures will increase (p<0.05) yield of moderately affected trees. Further research is needed to clarify whether a pathogen is the cause, the role of soil moisture in AVG, and develop a varietal solution.
Resumo:
Three types of forecasts of the total Australian production of macadamia nuts (t nut-in-shell) have been produced early each year since 2001. The first is a long-term forecast, based on the expected production from the tree census data held by the Australian Macadamia Society, suitably scaled up for missing data and assumed new plantings each year. These long-term forecasts range out to 10 years in the future, and form a basis for industry and market planning. Secondly, a statistical adjustment (termed the climate-adjusted forecast) is made annually for the coming crop. As the name suggests, climatic influences are the dominant factors in this adjustment process, however, other terms such as bienniality of bearing, prices and orchard aging are also incorporated. Thirdly, industry personnel are surveyed early each year, with their estimates integrated into a growers and pest-scouts forecast. Initially conducted on a 'whole-country' basis, these models are now constructed separately for the six main production regions of Australia, with these being combined for national totals. Ensembles or suites of step-forward regression models using biologically-relevant variables have been the major statistical method adopted, however, developing methodologies such as nearest-neighbour techniques, general additive models and random forests are continually being evaluated in parallel. The overall error rates average 14% for the climate forecasts, and 12% for the growers' forecasts. These compare with 7.8% for USDA almond forecasts (based on extensive early-crop sampling) and 6.8% for coconut forecasts in Sri Lanka. However, our somewhatdisappointing results were mainly due to a series of poor crops attributed to human reasons, which have now been factored into the models. Notably, the 2012 and 2013 forecasts averaged 7.8 and 4.9% errors, respectively. Future models should also show continuing improvement, as more data-years become available.
Postharvest handling practices and irradiation increase lenticel discolouration in ‘B74’ mango fruit
Resumo:
ABSTRACT 'B74' mango is a recently commercialised cultivar in Australia, with an appealing skin colour and firm fibreless flesh. However, fruit can develop lenticel discolouration (LD) after harvest, with loss of commercial value, especially after γ-irradiation as a disinfestation treatment. We hypothesised that postharvest practices could increase fruit sensitivity to LD and tested that by sequentially sampling fruit between the orchard and the end of the packing line over two seasons, followed by ripening without and with irradiation treatment. Exposure of 441-610 Gy γ-irradiation significantly increased the severity of LD by 6.8-fold in commercially picked and packed ripe fruit, reducing the proportion of marketable fruit from 98% to 2%, compared to irradiated fruit harvested directly from the trees and not exposed to de-sapping solution and packing operations. Also, LD increased progressively as the fruit passed through the harvesting and packing processes, and exposure to only bore water increased LD severity compared with no water contact. Results suggest that the typical de-sapping process used during harvesting is a major contributor to skin sensitivity to LD in 'B74' mango fruit, and that other packing operations involving wetting of the fruit have an additive effect on it. These effects are exacerbated if fruit is irradiated.
Resumo:
A self-organising model of macadamia, expressed using L-Systems, was used to explore aspects of canopy management. A small set of parameters control the basic architecture of the model, with a high degree of self-organisation occurring to determine the fate and growth of buds. Light was sensed at the leaf level and used to represent vigour and accumulated basipetally. Buds also sensed light so as to provide demand in the subsequent redistribution of the vigour. Empirical relationships were derived from a set of 24 completely digitised trees after conversion to multiscale tree graphs (MTG) and analysis with the OpenAlea software library. The ability to write MTG files was embedded within the model so that various tree statistics could be exported for each run of the model. To explore the parameter space a series of runs was completed using a high-throughput computing platform. When combined with MTG generation and analysis with OpenAlea it provided a convenient way in which thousands of simulations could be explored. We allowed the model trees to develop using self-organisation and simulated cultural practices such as hedging, topping, removal of the leader and limb removal within a small representation of an orchard. The model provides insight into the impact of these practices on potential for growth and the light distribution within the canopy and to the orchard floor by coupling the model with a path-tracing program to simulate the light environment. The lessons learnt from this will be applied to other evergreen, tropical fruit and nut trees.
Resumo:
Dada a escassez de informações na literatura e a importância do manejo adequado de resíduos orgânicos na agricultura, objetivou-se avaliar os efeitos da aplicação do resíduo da indústria processadora de goiabas em um Argissolo Vermelho-Amarelo, determinando-se as alterações provocadas na química do solo, no estado nutricional de goiabeiras e na produção de frutos. As doses de resíduo aplicadas no pomar foram estabelecidas em função dos teores de N no resíduo. O delineamento empregado foi o de blocos casualizados, com cinco tratamentos e quatro repetições, sendo as doses do resíduo (moído) de 0, 9, 18, 27 e 36 t ha-1 (peso do material seco). Foram feitas três aplicações do resíduo: em 2006, 2007 e 2008. O resíduo da indústria processadora de goiabas promoveu aumento nos teores de P no solo; as goiabeiras apresentaram aumento dos teores de N, Ca, Mg e Mn; a produção de frutos foi alterada positiva e significativamente no terceiro ano do experimento.
Resumo:
Background The Malawi National Malaria Control Program conducted Indoor Residual Spraying (IRS) in 2010 and 2013 in selected hot districts along the valleys including Karonga, but no study has been done to measure community satisfaction levels in these areas. Aim To assess satisfaction levels of community with IRS in both rural and urban settings, in Karonga district. Methods A cross-sectional study was conducted in urban village of Mwahimba and rural village of Fundi. Qualitative and quantitative data was collected from households’ representatives through Focus Group Discussions (FGDs) using De Wets’s Schutte tool. Qualitative data was analysed using thematic analysis while numbers and percentages were generated using Microsoft excel. Results Overall level of satisfaction in Fundi was estimated at 69% while that of Mwahimba was at 60.9%. In Fundi village, 66.1 % (37) of the household representatives were satisfied while in Mwahimba village, 60.7 % (34) were satisfied with the IRS programme. Factors that led to satisfaction were minimal adverse effects of the chemical on people after spraying, killing of other insects, sprayer’ courtesy and good communication. Factors behind dissatisfaction include: short residual effect of the chemical used, over-dilution of the chemical and minimal community involvement. Conclusion Despite finding high satisfaction levels in rural village than in an urban village, overall all the villages reported low levels of satisfaction with IRS due to various factors some of which common to both villages. Karonga District Health Office needs to involve the community in the process of spraying by recruiting sprayers from the target area and also explaining the purpose of dilution and the dilution factor to community members.
Resumo:
Harvest efficiency is defined as the percentage of fruits harvested by total production. The percentage of fruits harvested is less than 100% when working with trunk shakers to detach olives. It is important to increase the percentage of fruits harvested in order to increase farmer’s income. This objective can be achieved knowing the evolution of the main factors affecting fruit detachment. Fruit removal force (FRF), fruit weight (P) and the ratio between them are important for harvest efficiency. Field trials took place for two years (2013-2014) in Vilariça Valley, northeast Portugal in an olive orchard with ‘Cobrançosa Transmontana’ cultivar. It was adopted a mechanical harvesting system based on a trunk shaker to detach fruits, and an inverted umbrella to collect fruits. Elementary operation times were measured in seconds to evaluate work rates. FRF and P were measured in the ripening period, to evaluate their evolution. In this paper are presented the preliminary results of the ratio FRF (fruit removal force)/fruit weight evolution during the ripening period (P) and the results of the equipment work rate (trees h-1). The ratio FRF/P has predominantly descendant values in the weeks before harvest, from 140 to 80 as a result of a FRF downward variation from 4.9 to 2.94 N and an upward variation of P from 0.0294 to 0.0637 N. The FRF/P ratio stabilizes the decline in the last week of November just before harvesting, registering in some cases a slight increase in consequence of FRF increase higher than P increase (contrary to the tendency of previous weeks). Equipment work rate showed values between 40 and 57 trees h-1, confirming previous results.
Resumo:
This work objective was to estimate the bioconcentration factor (BCF) of thirty six pesticides used in the Brazilian integrated apple production systems (IAP), in order to select priority pesticides to be monitored in apples. A hypothetical apple orchard was assumed and the model applied was according to Paraíba (2007) [Pesticide bioconcentration modeling for fruit trees. Chemosphere (66:1468-1475)]. The model relates BCF with plant and pesticide characteristics. The octanol-water partition coefficients of pesticides and their degradation rates in the soil were used. The following plant variables were considered: growth rate, total dry biomass, daily water transpiration rate, and total volume of water necessary to produce one kg of fresh fruit per plant. The pesticide stem-water partition coefficient and the transpiration stream concentration factor were calculated using equations that relate each coefficient with the octanol-water partition coefficient. The pesticide BCF in fruits is an important indicator of the pesticide affinity to fruits, and helps to improve the integrated production systems.
Resumo:
El olivar español es el primer productor mundial de aceite (40%) y de aceituna de mesa (25%). La mayor parte del olivar no es rentable y es clave reducir sus costes. Dado que la recolección supone del orden del 50% de su valor, en ella se deben centrar los esfuerzos. No existe una solución única válida para la recolección de todos los tipos de olivar, aunque, en olivares modernos de media y de alta densidad existe un alto grado de mecanización. Sin embargo, el olivar tradicional, que representa casi el 70% del total, no dispone de una cosechadora. Su introducción supondría un cambio tecnológico y una innovación clave para este tipo de olivar. La presente memoria expone los resultados obtenidos en I+D+i con el objetivo principal de desarrollar la primera cosechadora para la recolección integral de olivar tradicional. En una primera fase, se realizó un estudio de un sistema sacudidor de copa procedente de cítricos para su aplicación a olivar, determinando las características de la sacudida y del funcionamiento de la máquina en campo. Posteriormente, se completaron estos estudios, determinado la forma y zona de caída de los frutos. Por último, se desarrolló un sistema de recepción, logística, limpieza y almacenaje del fruto para incorporación de, alcanzándose resultados muy prometedores en la recolección integral del árbol. En fases posteriores, se realizó una caracterización de árboles y plantaciones tradicionales para poder realizar un diseño específico de sistema de derribo adaptado a esta tipología. Tras un proceso de investigación sobre los principios de la sacudida de la copa y el desprendimiento de los frutos, se avanzó en el diseño y fabricación de nuevos sistemas de sacudida de copa, así como en el desarrollo de tecnología para el copiado automático del contorno del árbol. Los nuevos sistemas para derribar las aceitunas alcanzaron resultados prometedores para su aplicación al olivar tradicional, adaptándose a su morfología y a las características singulares de sus árboles. Finalmente, fruto del trabajo realizado en la línea 1 del convenio Mecaolivar, toda la investigación desarrollada se materializó en la fabricación de un prototipo de cosechadora con sistema sacudidor de copa para el olivar tradicional. Estas máquinas demuestran la viabilidad de la cosecha integral de los olivos tradicionales.
Resumo:
Citrus are a group of fruit species, quite heterogeneous in many aspects, including chemical composition of the fruit. Since ancient times, some citrus fruits were used to prevent and cure human diseases. In the recent decades, it has been demonstrated that fruits can actually help prevent and cure some diseases and above all, they are essential in a balanced diet. Citrus fruits, as one of the groups of fruit species, with greater importance in the world, have been studied for their effects on human health. Some species of citrus were referred as potential antioxidant based therapy for heart disease, cancer and inflammation. Fruit peels and seeds have also high antioxidant activity. The health benefits of citrus fruit have mainly been attributed to the high level of bioactive compounds, such as phenols (e.g., flavanone glycosides, hydroxycinnamic acids), carotenoids and vitamin C. These compounds are present in the fruit pulp and hence in the juice. But some bioactive compounds can be found in parts of the fruit which usually are not used for human food. The content of bioactive compounds depends on the species and cultivar, but also depends on the production system followed in the orchard. Citrus fruits, their derivatives and their by-products (peel, pulp and oil) are reach in different bioactive compounds and its maturity, postharvest and agroindustry processes influence their composition and concentration. The aim of this chapter was to review the main bioactive compounds of the different components of citrus and their relationship to health.
Resumo:
The purpose of this study was to evaluate the response of the Champaka pineapple to inoculation with the diazotrophic bacterium Asaia bogorensis (strain 219) when grown with organic fertilizer in an irrigated sapota orchard. Plantlets were transplanted to tubes containing a mixture of worm compost and vermiculite and inoculated with 108 bacterial cells. After five and a half months of acclimatization the plantlets were transplanted in furrows in the sapota orchard. Fertilizer was placed at the bottom of the furrows and covered with three doses (2.5; 5.0 and 7.5 L linear m−1 row) of three organic composts. The successful association of the plantlets with the diazo-trophic bacterium was confirmed by most probable number analysis before transferring to the field. Plants inoculated with strain AB219 showed the greatest initial leaf growth and produced the heaviest fruits compared to uninoculated plants. Plant growth and fruit yield increased with increasing compost dosages. The results suggested that Champaka pineapple benefited from the association of A. bogorensis (strain 219) when grown under irrigation and with organic fertilizer.
Resumo:
Biophysical and meteorological variables as well as radiometric canopy temperatures were collected in an intensive orchard near Évora, Portugal, with 28% ground cover by canopy and combined in a simplified two-source energy balance model (STSEB) to independently calculate the olive tree transpiration (T_STSEB) component of the total evapotranspiration (ETc). Sap flow observations were simultaneously taken in the same orchard allowing also for independent calculations of tree transpiration (T_SF). Model water use results were compared with water use estimates from the sap flow measurements. Good agreement was observed (R2=0.86, RMSE=0.20 mm d-1), with an estimation average absolute error (AAE) of 0.17 mm d-1. From June to August, on average olive water use were 1.92 and 1.89 mm d-1 for sap flow and STSEB model respectively, and 1.38 and 1.58 mm d-1 for the month of September. Results were also used to assess the olive basal crop coefficients (Kcb). Kcb estimates of 0.33 were obtained for sap flow and STSEB model, respectively, for June to August, and of 0.44 and 0.53 for the month of September. Basal crop coefficients were lower than the suggested FAO56 average Kcb values of 0.65 for June to August, the crop mid-season growth stage, and of 0.65 for the month of September, the end-season.
Resumo:
We used 2012 sap flow measurements to assess the seasonal dynamics of daily plant transpiration (ETc) in a high-density olive orchard (Olea europaea L. cv. ‘Arbequina’) with a well-watered (HI) control treatment A to supply 100 % of the crop water needs, and a moderately (MI) watered treatment B that replaced 70% of crop needs. To assure that treatment A was well-watered, we compared field daily ETc values against ETc obtained with the Penman-Monteith (PM) combination equation incorporating the Orgaz et al. (2007) bulk daily canopy conductance (gc) model, validated for our non-limiting conditions. We then tested the hypothesis of indirectly monitoring olive ETc from readily available vegetation index (VI) and ground-based plant water stress indicator. In the process we used the FAO56 dual crop coefficient (Kc) approach. For the HI olive trees we defined Kcb as the basal transpiration coefficient, and we related Kcb to remotely sensed Soil Adjusted Vegetation Index (SAVI) through a Kcb-SAVI functional relationship. For the MI treatment, we defined the actual transpiration ETc as the product of Kcb and the stress reduction coefficient Ks obtained as the ratio of actual to crop ETc, and we correlated Ks with MI midday stem water potential (ψst) values through a Ks-ψ functional relationship. Operational monitoring of ETc was then implemented with the ETc = Kcb(SAVI)Ks(ψ)ETo relationship stemmed from the FAO56 approach and validated taking as inputs collected SAVI and ψst data reporting to year 2011. Low validation error (6%) and high goodness-of-fit of prediction were observed (R2 = 0.94, RSME = 0.2 mm day-1, P = 0.0015), allowing to consider that under field conditions it is possible to predict ETc values for our hedgerow olive orchards if SAVI and water potential (ψst) values are known.
Resumo:
Current pear pruning making use of pneumatic shears still is a very labour intensive operation. The Proder project “Avaliação da poda mecânica em pomares de pera” was designed to contribute to solutions that would reduce the present dependence in labour and therefore to promote a reduction in pruning costs. This paper shows the results of a trial made to evaluate the influence of mechanical topping in manual pruning complement field work and pear yield. Topping was performed using a Reynolds 6DT 3.0m cutting bar with six hydraulic-driven circular disc-saws mounted in the three point tractor linkage system. The field trial was performed in a commercial orchard with 20 years, planted in an array of 4m x 2m with tree lines oriented in North-South direction. Trees were trained as the central leader system. In this trial, in a randomised complete block design with four replications, two treatments are being compared leading to 8 plots with one line of 14 trees per plot. The treatments tests were: T1 - manual pruning performed by workers using pneumatic shears, in each year; T2 - Topping the canopy parallel to the ground, using a discs-saw pruning machine mounted in a front loader of an agricultural tractor, followed by manual pruning complement performed by workers with pneumatic shears. Tree height and width was measured, before and after pruning. Work was timed and pear yields evaluated. Mechanical topping seems to be effective in the control of tree height, which can contribute to increase 14% of work rates on manual pruning complement. No significant differences in pear yield were found between treatments.
Resumo:
The apple is attacked by a significant number of insect pests in Brazilian commercial orchards, including Bonagota salubricola and Grapholita molesta (Lepidoptera: Tortricidae). Sexual disruption of B. salubricola and G. molesta was evaluated in apple orchard using the flowable pheromone formulations, SPLAT Grafo+Bona (SG+B), SPLAT Attract and Kill Grafo+Bona (SAKG+B), and compared with the standard insecticides used for management in the Integrated Apple Production (IAP) system. Both formulations were applied at a rate of 1kg/ha on October 10, 2005 and December 13, 2005 using 300 and 1000 point sources/ha of SG+B and SAKG+B, respectively in experimental units of 7 ha. Adult male captures of B. salubricola and G. molesta were evaluated weekly in Delta traps with specific synthetic sex pheromone from October 10, 2005 to February 14, 2006. Damage to fruits was evaluated on November 21 and December 21, 2005, and January 25 and February 14, 2006. In the SPLAT treated experimental units a significant reduction was observed in the number of B. salubricola and G. molesta males caught in Delta traps compared to the experimental unit IAP. Damage by B. salubricola at harvest ranged from 1.63 to 4.75% with no differences between treatments, while damage by G. molesta was near zero in all experimental units. Mating disruption using SG+B and SAKG+B was sufficient to control B. salubricola and G. molesta with results equivalent to IAP guidelines. This technology is promising for management of both pests in Brazilian apple orchards with immediate reduction of 43% in the number of insecticide applications.