953 resultados para Orbitomedial prefrontal cortex
Resumo:
Chronic alcohol exposure induces lasting behavioral changes, tolerance, and dependence. This results, at least partially, from neural adaptations at a cellular level. Previous genome-wide gene expression studies using pooled human brain samples showed that alcohol abuse causes widespread changes in the pattern of gene expression in the frontal and motor cortices of human brain. Because these studies used pooled samples, they could not determine variability between different individuals. In the present study, we profiled gene expression levels of 14 postmortem human brains (seven controls and seven alcoholic cases) using cDNA microarrays (46 448 clones per array). Both frontal cortex and motor cortex brain regions were studied. The list of genes differentially expressed confirms and extends previous studies of alcohol responsive genes. Genes identified as differentially expressed in two brain regions fell generally into similar functional groups, including metabolism, immune response, cell survival, cell communication, signal transduction and energy production. Importantly, hierarchical clustering of differentially expressed genes accurately distinguished between control and alcoholic cases, particularly in the frontal cortex.
Resumo:
Alcohol dependence may result from neuroadaptation involving alteration of gene expression after long-term alcohol exposure. The systematic study of gene expression profiles of the human alcoholic brain was initiated using the method of polymerase chain reaction (PCR)-differential display and was followed by DNA microarray. To date, more than 100 alcohol-responsive genes have been identified from the frontal cortex, motor cortex and nucleus accumbens of the human brain. These genes have a wide range of functions in the brain and indicate diverse actions of alcohol on neuronal function. This review discusses the current information on the genetic basis of alcoholism and the induction and characterization of these alcohol-responsive genes.
Resumo:
To determine whether the visuospatial n-back working memory task is a reliable and valid measure of cognitive processes believed to underlie intelligence, this study compared the reaction times and accuracy of perforniance of 70 participants, with performance on the Multidimensional Aptitude Battery (MAB). Testing was conducted over two sessions separated by 1 week. Participants completed the MAB during the second test session. Moderate testretest reliability for percentage accuracy scores was found across the four levels of the n-back task, whilst reaction times were highly reliable. Furthermore, participants' performance on the MAB was negatively correlated with accuracy of performance at the easier levels of the n-back task and positively correlated with accuracy of performance at the harder task levels. These findings confirm previous research examining the cognitive basis of intelligence, and suggest that intelligence is the product of faster speed of information processing, as well as superior working memory capacity. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Increasing evidence suggests a link between attention, working memory, serotonin (5-HT), and prefrontal cortex activity. In an attempt to tease out the relationship between these elements, this study tested the effects of the hallucinogenic mixed 5-HT1A/2A receptor agonist psilocybin alone and after pretreatment with the 5-HT2A antagonist ketanserin. Eight healthy human volunteers were rested on a multiple-object tracking task and spatial working memory task under the four conditions: placebo, psilocybin (215 mu g/kg), ketanserin (50 mg), and psilocybin and ketanserin. Psilocybin significantly reduced attentional tracking ability, but had no significant effect on spatial working memory, suggesting a functional dissociation between the two tasks. Pretreatment with ketanserin did not attenuate the effect of psilocybin on attentional performance, suggestinga primary involvement of the 5-HT1A receptor in the observed defecit. Based on physiological and pharmacological data,we speculate that this impaired attentional performance may reflect a reduced ability to suppress or ignore distracting stimuli rather than reduced attentional capacity. The clinical relevance of these results is also discussed.
Resumo:
The calcium-dependent afterhyperpolarization (AHP) that follows trains of action potentials is responsible for controlling action potential firing patterns in many neuronal cell types. We have previously shown that the slow AHP contributes to spike frequency adaptation in pyramidal neurons in the rat lateral amygdala. In addition, a dendritic voltage-gated potassium current mediated by Kv1.2-containing channels also suppresses action potential firing in these neurons. In this paper we show that this voltage-gated potassium current and the slow AHP act together to control spike frequency adaptation in lateral amygdala pyramidal neurons. The two currents have similar effects on action potential number when firing is evoked either by depolarizing current injections or by synaptic stimulation. However, they differ in their control of firing frequency, with the voltage-gated potassium current but not the slow AHP determining the initial frequency of action potential firing. This dual mechanism of controlling firing patterns is unique to lateral amygdala neurons and is likely to contribute to the very low levels of firing seen in lateral amygdala neurons in vivo.
Resumo:
Because the poor growth performance of intensively housed pigs is associated with increased circulating glucocorticoid concentrations, we investigated the effects of glucocorticoid suppression by inducing a humoral immune response to ACTH on physiological and production variables in growing pigs. Grower pigs (28.6 0.9 kg) were immunized with amino acids 1 through 24 of ACTH conjugated to ovalbumin and suspended in diethylaminoethyl (DEAE) dextran-adjuvant or adjuvant alone (control) on d 1, 28, and 56. The ACTH-specific antibody titers generated suppressed increases in cortisol concentrations on d 63 in response to an acute stressor (P = 0.002; control = 71 +/- 8.2 ng/ mL; ACTH-immune = 43 +/- 4.9 ng/mL) without altering basal concentrations. Plasma beta-endorphin concentrations were also increased (P < 0.001) on d 63 (control = 18 +/- 2.1 ng/mL; ACTH-immune = 63 +/- 7.3 ng/mL), presumably because of a release from negative feedback on the expression of proopiomelanocortin in pituitary corticotropes. Immunization against ACTH did not alter ADG (P = 0.120; control = 1,077 25; ACTH-immune = 1,143 25 g) or ADFI (P = 0.64; control = 2,719 42; ACTH-immune = 2,749 42 g) and did not modify behavior (P = 0.681) assessed by measuring vocalization in response to acute restraint. In summary, suppression of stress-induced cortisol responses through ACTH immunization increased beta-endorphin concentrations, but it did not modify ADG, ADFI, or restraint vocalization score in growing pigs.
Resumo:
The conceptual complexity of problems was manipulated to probe the limits of human information processing capacity. Participants were asked to interpret graphically displayed statistical interactions. In such problems, all independent variables need to be considered together, so that decomposition into smaller subtasks is constrained, and thus the order of the interaction. directly determines conceptual complexity. As the order of the interaction increases, the number of variables increases. Results showed a significant decline in accuracy and speed of solution from three-way to four-way interactions. Furthermore, performance on a five-way interaction was at chance level. These findings suggest that a structure defined on four variables is at the limit of human processing capacity.
Resumo:
DCC (deleted in colorectal cancer)-the receptor of the netrin-1 neuronal guidance factor-is expressed and is active in the central nervous system (CNS) during development, but is down-regulated during maturation. The substantia nigra contains the highest level of netrin-1 mRNA in the adult rodent brain, and corresponding mRNA for DCC has also been detected in this region but has not been localized to any particular neuron type. In this study, an antibody raised against DCC was used to determine if the protein was expressed by adult dopamine neurons, and identify their distribution and projections. Significant DCC-immunoreactivity was detected in midbrain, where it was localized to ventrally displaced A9 dopamine neurons in the substantia nigra, and ventromedial A10 dopamine neurons predominantly situated in and around the interfascicular nucleus. Strong immunoreactivity was not detected in dopamine neurons found elsewhere, or in non-dopamine-containing neurons in the midbrain. Terminal fields selectively labeled with DCC antibody corresponded to known nigrostriatal projections to the dorsolateral striatal patches and dorsomedial shell of the accumbens, and were also detected in prefrontal cortex, septum, lateral habenular and ventral pallidum. The unique distribution of DCC-immunoreactivity in adult ventral midbrain dopamine neurons suggests that netrin-1/DCC signaling could function in plasticity and remodeling previously identified in dopamine projection pathways. In particular, a recent report that DCC is regulated through the ubiquitin-proteosome system via Siah/Sina proteins, is consistent with a potential involvement in genetic and sporadic forms of Parkinson's disease. (c) 2005 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Semantic priming occurs when a subject is faster in recognising a target word when it is preceded by a related word compared to an unrelated word. The effect is attributed to automatic or controlled processing mechanisms elicited by short or long interstimulus intervals (ISIs) between primes and targets. We employed event-related functional magnetic resonance imaging (fMRI) to investigate blood oxygen level dependent (BOLD) responses associated with automatic semantic priming using an experimental design identical to that used in standard behavioural priming tasks. Prime-target semantic strength was manipulated by using lexical ambiguity primes (e.g., bank) and target words related to dominant or subordinate meaning of the ambiguity. Subjects made speeded lexical decisions (word/nonword) on dominant related, subordinate related, and unrelated word pairs presented randomly with a short ISI. The major finding was a pattern of reduced activity in middle temporal and inferior prefrontal regions for dominant versus unrelated and subordinate versus unrelated comparisons, respectively. These findings are consistent with both a dual process model of semantic priming and recent repetition priming data that suggest that reductions in BOLD responses represent neural priming associated with automatic semantic activation and implicate the left middle temporal cortex and inferior prefrontal cortex in more automatic aspects of semantic processing.
Resumo:
Verbal working memory and emotional self-regulation are impaired in Bipolar Disorder (BD). Our aim was to investigate the effect of Lamotrigine (LTG), which is effective in the clinical management of BD, on the neural circuits subserving working memory and emotional processing. Functional Magnetic Resonance Imaging data from 12 stable BD patients was used to detect LTG-induced changes as the differences in brain activity between drug-free and post-LTG monotherapy conditions during a verbal working memory (N-back sequential letter task) and an angry facial affect recognition task. For both tasks, LGT monotherapy compared to baseline was associated with increased activation mostly within the prefrontal cortex and cingulate gyrus, in regions normally engaged in verbal working memory and emotional processing. Therefore, LTG monotherapy in BD patients may enhance cortical function within neural circuits involved in memory and emotional self-regulation. © 2007 Elsevier B.V. and ECNP.
Resumo:
Spatial generalization skills in school children aged 8-16 were studied with regard to unfamiliar objects that had been previously learned in a cross-modal priming and learning paradigm. We observed a developmental dissociation with younger children recognizing objects only from previously learnt perspectives whereas older children generalized acquired object knowledge to new viewpoints as well. Haptic and - to a lesser extent - visual priming improved spatial generalization in all but the youngest children. The data supports the idea of dissociable, view-dependent and view-invariant object representations with different developmental trajectories that are subject to modulatory effects of priming. Late-developing areas in the parietal or the prefrontal cortex may account for the retarded onset of view-invariant object recognition. © 2006 Elsevier B.V. All rights reserved.
Resumo:
We report two functional magnetic resonance imaging (fMRI) experiments which reveal a cortical network activated when perceiving coloured grids, and experiencing the McCollough effect (ME). Our results show that perception of red-black and green-black grids activate the right fusiform gyrus (area V4) plus the left and right lingual gyri, right striate cortex (V1) and left insula. The ME activated the left anterior fusiform gyrus as well as the ventrolateral prefrontal cortex, and in common with colour perception, the left insula. These data confirm the critical role of the fusiform gyrus in actual and illusory colour perception as well as revealing localized frontal cortical activation associated with the ME, which would suggest that a 'top-down' mechanism is implicated in this illusion.
Resumo:
News & Comment. Many influential models of prefrontal cortex function suggest that activity within this area is often associated with additional activity in posterior regions of the cortex that support perception. The purpose of this cortical ‘coupling’ is to ensure that a perceptual representation is generated and then maintained within the working memory system. Areas in the right ventrolateral prefrontal cortex (vlPFC) and the fusiform gyrus have been implicated as associate areas involved in face processing. In an interesting case study by Vignal, Chauvel and Halgren the functional relationship between these two areas was tested1. In order to confirm the epileptogenic foci prior to resective surgery in a 30-year-old male patient, depth electrodes were implanted into sites around prefrontal, anterior temporal and premotor cortices. While the patient was looking at a blank screen, 50-Hz electrical stimulation of two probes implanted into the right anterior frontal gyrus resulted in the patient’s reporting the perception of a series of colourful faces. These facial hallucinations were described as being ‘…like passing slides, one after the after, linked together’. When asked to look at an actual face during stimulation at the same sites the patient reported transformation of that face (such as appearing without spectacles or with a hat). These findings were related to activity of a cortical network involving the vlPFC and the fusiform gyrus. This paper thus suggests a role in face processing for the vlPFC, evoking working memory processes to maintain facial representations.
Resumo:
Self-criticism is strongly correlated with a range of psychopathologies, such as depression, eating disorders and anxiety. In contrast, self-reassurance is inversely associated with such psychopathologies. Despite the importance of self-judgements and evaluations, little is known about the neurophysiology of these internal processes. The current study therefore used a novel fMRI task to investigate the neuronal correlates of self-criticism and self-reassurance. Participants were presented statements describing two types of scenario, with the instruction to either imagine being self-critical or self-reassuring in that situation. One scenario type focused on a personal setback, mistake or failure, which would elicit negative emotions, whilst the second was of a matched neutral event. Self-criticism was associated with activity in lateral prefrontal cortex (PFC) regions and dorsal anterior cingulate (dAC), therefore linking self-critical thinking to error processing and resolution, and also behavioural inhibition. Self-reassurance was associated with left temporal pole and insula activation, suggesting that efforts to be self-reassuring engage similar regions to expressing compassion and empathy towards others. Additionally, we found a dorsal/ventral PFC divide between an individual's tendency to be self-critical or self-reassuring. Using multiple regression analyses, dorsolateral PFC activity was positively correlated with high levels of self-criticism (assessed via self-report measure), suggesting greater error processing and behavioural inhibition in such individuals. Ventrolateral PFC activity was positively correlated with high self-reassurance. Our findings may have implications for the neural basis of a range of mood disorders that are characterised by a preoccupation with personal mistakes and failures, and a self-critical response to such events.
Resumo:
Background - Neural substrates of emotion dysregulation in adolescent suicide attempters remain unexamined. Method - We used functional magnetic resonance imaging to measure neural activity to neutral, mild or intense (i.e. 0%, 50% or 100% intensity) emotion face morphs in two separate emotion-processing runs (angry and happy) in three adolescent groups: (1) history of suicide attempt and depression (ATT, n = 14); (2) history of depression alone (NAT, n = 15); and (3) healthy controls (HC, n = 15). Post-hoc analyses were conducted on interactions from 3 group × 3 condition (intensities) whole-brain analyses (p < 0.05, corrected) for each emotion run. Results - To 50% intensity angry faces, ATT showed significantly greater activity than NAT in anterior cingulate gyral–dorsolateral prefrontal cortical attentional control circuitry, primary sensory and temporal cortices; and significantly greater activity than HC in the primary sensory cortex, while NAT had significantly lower activity than HC in the anterior cingulate gyrus and ventromedial prefrontal cortex. To neutral faces during the angry emotion-processing run, ATT had significantly lower activity than NAT in the fusiform gyrus. ATT also showed significantly lower activity than HC to 100% intensity happy faces in the primary sensory cortex, and to neutral faces in the happy run in the anterior cingulate and left medial frontal gyri (all p < 0.006,corrected). Psychophysiological interaction analyses revealed significantly reduced anterior cingulate gyral–insula functional connectivity to 50% intensity angry faces in ATT v. NAT or HC. Conclusions - Elevated activity in attention control circuitry, and reduced anterior cingulate gyral–insula functional connectivity, to 50% intensity angry faces in ATT than other groups suggest that ATT may show inefficient recruitment of attentional control neural circuitry when regulating attention to mild intensity angry faces, which may represent a potential biological marker for suicide risk.