933 resultados para Olfactory Sensory Neuron
Resumo:
The objectives of this study were to determine (a) the influence of fiber on the sensory characteristics of dry dog foods; (b) differences of coated and uncoated kibbles for aroma and flavor characteristics; (c) palatability of these dry dog foods; and (d) potential associations between palatability and sensory attributes. A total of eight fiber treatments were manufactured: a control (no fiber addition), guava fiber (3%, 6%, and 12%), sugar cane fiber (9%; large and small particle size), and wheat bran fiber (32%; large and small particle size). The results indicated significant effects of fibers on both flavor and texture properties of the samples. Bitter taste and iron and stale aftertaste were examples of flavor attributes that differed with treatment, with highest intensity observed for 12% guava fiber and small particle size sugar cane fiber treatments. Fracturability and initial crispness attributes were lowest for the sugar cane fiber treatments. Flavor of all treatments changed after coating with a palatant, increasing in toasted, brothy, and grainy attributes. The coating also had a masking effect on aroma attributes such as stale, flavor attributes such as iron and bitter taste, and appearance attributes such as porosity. Palatability testing results indicated that the control treatment was preferred over the sugar cane or the wheat bran treatment. The treatment with large sugarcane fiber particles was preferred over the treatment with small particles, while both of the wheat bran treatments were eaten at a similar level. Descriptive sensory analysis data, especially textural attributes, were useful in pinpointing the underlying characteristics and were considered to be reasons that may influence palatability of dog foods manufactured with inclusion of different fibers.
Resumo:
Members of the subfamily Alphaherpesvirinae use the epithelium of the upper respiratory and/or genital tract as preferential sites for primary replication. However, bovine herpesvirus 5 (BoHV5) is neurotropic and neuroinvasive and responsible for meningoencephalitis in cattle and in animal models. A related virus, BoHV1 has also been occasionally implicated in natural cases of neurological infection and disease in cattle. The aim of the present study was to assess the in vitro effects of BoHV1 and BoHV5 replication in neuron-like cells. Overall, cytopathic effects, consisting of floating rounded cells, giant cells and monolayer lysis, induced by both viruses at 48 h postinfection (p.i.) resulted in a loss of cell viability and high virus titres (r = 0.978). The BoHV1 Cooper strain produced the lowest titres in neuron-like cells, although viral DNA was detected in infected cells during all experiments. Virus replication in infected cells was demonstrated by immunocytochemistry, flow cytometry and qPCR assays. BoHV antigens were better visualized at 48 h p.i. and flow cytometry analysis showed that SV56/90 and Los Angeles antigens were present at higher levels. In spite of the fact that BoHV titres dropped at 48 h p.i, viral DNA remained detectable until 120 h p.i. Sensitive TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) and annexin V assays were used to identify apoptosis. BoHV5 induced death in approximately 50 % of cells within 24 h p.i., similar to what has been observed for BoHV1 Los Angeles. Infection with the BoHV1 Cooper strain resulted in 26.37 % of cells being in the early stages of apoptosis; 63.69 % of infected cells were considered viable. Modulation of mitochondrial function, as measured by mitochondrial membrane depolarization, was synchronous with the virus replication cycle, cell viability and virus titres at 48 h p.i. Our results indicate that apoptosis plays an important role in preventing neuronal death and provides a bovine-derived in vitro system to study herpesvirus-neuron interactions.
Resumo:
A substantial number of patients with obsessive-compulsive disorder (OCD) report compulsions that are preceded not by obsessions but by subjective experiences known as sensory phenomena. This study aimed to investigate the frequency, severity, and age at onset of sensory phenomena in OCD, as well as to compare OCD patients with and without sensory phenomena in terms of clinical characteristics. We assessed 1,001 consecutive OCD patients, using instruments designed to evaluate the frequency/severity of OC symptoms, tics, anxiety, depression, level of insight and presence/severity of sensory phenomena. All together, 651 (65.0%) subjects reported at least one type of sensory phenomena preceding the repetitive behaviors. Considering the sensory phenomena subtypes, 371 (57.0%) patients had musculoskeletal sensations, 519 (79.7%) had externally triggered "just-right" perceptions, 176 (27.0%) presented internally triggered "just right," 144 (22.1%) had an "energy release," and 240 (36.9%) patients had an "urge only" phenomenon. Sensory phenomena were described as being as more severe than were obsessions by 102(15.7%) patients. Logistic regression analysis showed that the following characteristics were associated with the presence of sensory phenomena: higher frequency and greater severity of the symmetry/ordering/arranging and contamination/washing symptom dimensions; comorbid Tourette syndrome, and a family history of tic disorders. These data suggest that sensory phenomena constitute a poorly understood psychopathological aspect of OCD that merits further investigation. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Cohabitation for 14 days with Ehrlich tumor-bearing mice was shown to increase locomotor activity, to decrease hypothalamic noradrenaline (NA) levels, to increase NA turnover and to decrease innate immune responses and decrease the animals' resistance to tumor growth. Cage mates of a B16F10 melanoma-bearer mice were also reported to show neuroimmune changes. Chemosignals released by Ehrlich tumor-bearing mice have been reported to be relevant for the neutrophil activity changes induced by cohabitation. The present experiment was designed to further analyze the effects of odor cues on neuroimmune changes induced by cohabitation with a sick cage mate. Specifically, the relevance of chemosignals released by an Ehrlich tumor-bearing mouse was assessed on the following: behavior (open-field and plus maze); hypothalamic NA levels and turnover; adrenaline (A) and NA plasmatic levels; and host resistance induced by tumor growth. To comply with such objectives, devices specifically constructed to analyze the influence of chemosignals released from tumor-bearing mice were employed. The results show that deprivation of odor cues released by Ehrlich tumor-bearing mice reversed the behavioral, neurochemical and immune changes induced by cohabitation. Mice use scents for intraspecies communication in many social contexts. Tumors produce volatile organic compounds released into the atmosphere through breath, sweat, and urine. Our results strongly suggest that volatile compounds released by Ehrlich tumor-injected mice are perceived by their conspecifics, inducing the neuroimmune changes reported for cohabitation with a sick companion. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
There has been tremendous progress in understanding neural stem cell (NSC) biology, with genetic and cell biological methods identifying sequential gene expression and molecular interactions guiding NSC specification into distinct neuronal and glial populations during development. Data has emerged on the possible exploitation of NSC-based strategies to repair adult diseased brain. However, despite increased information on lineage specific transcription factors, cell-cycle regulators and epigenetic factors involved in the fate and plasticity of NSCs, understanding of extracellular cues driving the behavior of embryonic and adult NSCs is still very limited. Knowledge of factors regulating brain development is crucial in understanding the pathogenetic mechanisms of brain dysfunction. Since injury-activated repair mechanisms in adult brain often recapitulate ontogenetic events, the identification of these players will also reveal novel regenerative strategies. Here, we highlight the purinergic system as a key emerging player in the endogenous control of NSCs. Purinergic signalling molecules (ATP, UTP and adenosine) act with growth factors in regulating the synchronized proliferation, migration, differentiation and death of NSCs during brain and spinal cord development. At early stages of development, transient and time-specific release of ATP is critical for initiating eye formation; once anatomical CNS structures are defined, purinergic molecules participate in calcium-dependent neuron-glia communication controlling NSC behaviour. When development is complete, some purinergic mechanisms are silenced, but can be re-activated in adult brain after injury, suggesting a role in regeneration and self-repair. Targeting the purinergic system to develop new strategies for neurodevelopmental disorders and neurodegenerative diseases will be also discussed.
Resumo:
The main clinical manifestations of the spinocerebellar ataxias (SCAs) result from the involvement of the cerebellum and its connections. Cerebellar activity has been consistently observed in functional imaging studies of olfaction, but the anatomical pathways responsible for this connection have not yet been elucidated. Previous studies have demonstrated olfactory deficit in SCA2, Friedreich's ataxia and in small groups of ataxia of diverse aetiology. The authors used a validated version of the 16-item smell identification test from Sniffin' Sticks (SS-16) was used to evaluate 37 patients with genetically determined autosomal dominant ataxia, and 31 with familial ataxia of unknown genetic basis. This data was also compared with results in 106 Parkinson's disease patients and 218 healthy controls. The SS-16 score was significantly lower in ataxia than in the control group (p<0.001, 95% CI for beta=0.55 to 1.90) and significantly higher in ataxia than in Parkinson's disease (p<0.001, 95% CI for beta=-4.58 to -3.00) when adjusted for age (p=0.001, 95% CI for beta=-0.05 to -0.01), gender (p=0.19) and history of tobacco use (p=0.41). When adjusted for general cognitive function, no significant difference was found between the ataxia and control groups. This study confirms previous findings of mild hyposmia in ataxia, and further suggests this may be due to general cognitive deficits rather than specific olfactory problems.
Resumo:
Circadian rhythms in pacemaker cells persist for weeks in constant darkness, while in other types of cells the molecular oscillations that underlie circadian rhythms damp rapidly under the same conditions. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms leading to damped or self-sustained oscillations remain largely unknown. There exist many mathematical models that reproduce the circadian rhythms in the case of a single cell of the Drosophila fly. However, not much is known about the mechanisms leading to coherent circadian oscillation in clock neuron networks. In this work we have implemented a model for a network of interacting clock neurons to describe the emergence (or damping) of circadian rhythms in Drosophila fly, in the absence of zeitgebers. Our model consists of an array of pacemakers that interact through the modulation of some parameters by a network feedback. The individual pacemakers are described by a well-known biochemical model for circadian oscillation, to which we have added degradation of PER protein by light and multiplicative noise. The network feedback is the PER protein level averaged over the whole network. In particular, we have investigated the effect of modulation of the parameters associated with (i) the control of net entrance of PER into the nucleus and (ii) the non-photic degradation of PER. Our results indicate that the modulation of PER entrance into the nucleus allows the synchronization of clock neurons, leading to coherent circadian oscillations under constant dark condition. On the other hand, the modulation of non-photic degradation cannot reset the phases of individual clocks subjected to intrinsic biochemical noise.
Resumo:
Background: A possible viral etiology has been documented in the genesis of motor neuron disorders and acquired peripheral neuropathies, mainly due to the vulnerability of peripheral nerves and the anterior horn to certain viruses. In recent years, several reports show association of HIV infection with Amyotrophic Lateral Sclerosis Syndrome, Motor Neuron Diseases and peripheral neuropathies. Objective: To report a case of an association between Motor Neuron Disease and Acquired Axonal neuropathy in HIV infection, and describe the findings of neurological examination, cerebrospinal fluid, neuroimaging and electrophysiology. Methods: The patient underwent neurological examination. General medical examinations were performed, including, specific neuromuscular tests, analysis of cerebrospinal fluid, muscle biopsy and imaging studies. Results and Discussion: The initial clinical presentation of our case was marked by cramps and fasciculations with posterior distal paresis and atrophy in the left arm. We found electromyography tracings with deficits in the anterior horn of the spinal cord and peripheral nerves. Dysphagia and release of primitive reflexes were also identified. At the same time, the patient was informed to be HIV positive with high viral load. He received antiretroviral therapy, with load control but with no clinical remission. Conclusion: Motor Neuron disorders and peripheral neuropathy may occur in association with HIV infection. However, a causal relationship remains uncertain. It is noteworthy that the antiretroviral regimen may be implicated in some cases.
Resumo:
BACKGROUND: It is widely accepted that red wines constitute one of the most important sources of dietary polyphenolic antioxidants. However, it is still not known how some variables such as variety, vintage, country of origin, and retail price are associated with the antioxidant activity and sensory profile of South American red wines. In this regard, 80 samples produced in Brazil, Chile and Argentina were assessed in relation to their sensory properties, color and in vitro antioxidant activity, and results were subjected to multivariate statistical techniques. RESULTS: Samples were grouped in clusters, characterized by high, intermediate and low in vitro antioxidant activity, sensory properties and prices. It was possible to observe that wines with high antioxidant activity were associated to high retail prices and overall perception of sensory quality. CONCLUSION: South American wines produced from Vitis vinifera such as Syrah, Malbec and Cabernet Sauvignon had higher in vitro antioxidant activity and also higher sensory quality than wines produced from Vitis labrusca. This result was independent of vintage (2002-2010), corroborating the idea that the same grape varietal, even when produced in different years, displays similar sensory characteristics and antioxidant activity. (C) 2011 Society of Chemical Industry
Resumo:
The effects of deep brain stimulation of the subthalamic nucleus on nonmotor symptoms of Parkinson's disease (PD) rarely have been investigated. Among these, sensory disturbances, including chronic pain (CP), are frequent in these patients. The aim of this study was to evaluate the changes induced by deep brain stimulation in the perception of sensory stimuli, either noxious or innocuous, mediated by small or large nerve fibers. Sensory detection and pain thresholds were assessed in 25 PD patients all in the off-medication condition with the stimulator turned on or off (on- and off-stimulation conditions, respectively). The relationship between the changes induced by surgery on quantitative sensory testing, spontaneous CP, and motor abilities were studied. Quantitative sensory test results obtained in PD patients were compared with those of age-matched healthy subjects. Chronic pain was present in 72% of patients before vs 36% after surgery (P = .019). Compared with healthy subjects, PD patients had an increased sensitivity to innocuous thermal stimuli and mechanical pain, but a reduced sensitivity to innocuous mechanical stimuli. In addition, they had an increased pain rating when painful thermal stimuli were applied, particularly in the off-stimulation condition. In the on-stimulation condition, there was an increased sensitivity to innocuous thermal stimuli but a reduced sensitivity to mechanical or thermal pain. Pain provoked by thermal stimuli was reduced when the stimulator was turned on. Motor improvement positively correlated with changes in warm detection and heat pain thresholds. Subthalamic nucleus deep brain stimulation contributes to relieve pain associated with PD and specifically modulates small fiber-mediated sensations. (C) 2012 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved.
Resumo:
Motor cortex stimulation is generally suggested as a therapy for patients with chronic and refractory neuropathic pain. However, the mechanisms underlying its analgesic effects are still unknown. In a previous study, we demonstrated that cortical stimulation increases the nociceptive threshold of naive conscious rats with opioid participation. In the present study, we investigated the neurocircuitry involved during the antinociception induced by transdural stimulation of motor cortex in naive rats considering that little is known about the relation between motor cortex and analgesia. The neuronal activation patterns were evaluated in the thalamic nuclei and midbrain periaqueductal gray. Neuronal inactivation in response to motor cortex stimulation was detected in thalamic sites both in terms of immunolabeling (Zif268/Fos) and in the neuronal firing rates in ventral posterolateral nuclei and centromedian-parafascicular thalamic complex. This effect was particularly visible for neurons responsive to nociceptive peripheral stimulation. Furthermore, motor cortex stimulation enhanced neuronal firing rate and Fos immunoreactivity in the ipsilateral periaqueductal gray. We have also observed a decreased Zif268, delta-aminobutyric acid (GABA), and glutamic acid decarboxylase expression within the same region, suggesting an inhibition of GABAergic interneurons of the midbrain periaqueductal gray, consequently activating neurons responsible for the descending pain inhibitory control system. Taken together, the present findings suggest that inhibition of thalamic sensory neurons and disinhibition of the neurons in periaqueductal gray are at least in part responsible for the motor cortex stimulation-induced antinociception. (C) 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
ACR is supported by a research grant from CNPq.
Resumo:
DA is supported by a CAPES PhD grant and ACR is the recipient of research grants by CNPq and FAPESP.
Resumo:
OBJETIVO: Avaliar os limiares de percepção da pressão em polpas de dois dedos (indicador e mínimo), em uma população brasileira, sem lesão nervosa ou neuropatia. MÉTODOS: Usamos Pressure-Specified Sensory Device, um equipamento computadorizado para obter limiares de percepção da pressão normal, tanto estáticos quanto dinâmicos, e discriminação de dois pontos. RESULTADOS: Testamos a sensibilidade nos dedos, em 30 voluntários. Os testes de significância foram realizados utilizando o teste t de Student. Os valores médios (g/mm²) para os limiares de pressão estática de um e dois pontos (s1PD, s2PD) e discriminação dinâmica de um e dois pontos (m1PD, m2PD) no dedo indicador dominante foram: s1PD = 0,4, m1PD = 0,4, s2PD = 0,48, m2PD = 0,51. CONCLUSÃO: Não há diferença significativa na sensibilidade entre as mãos dominante e não dominante.